Graph Contrastive Clustering

聚类分析 计算机科学 人工智能 判别式 模糊聚类 相关聚类 图形 模式识别(心理学) 机器学习 自然语言处理 数据挖掘 理论计算机科学
作者
Huasong Zhong,Jianlong Wu,Dong Feng,Jianqiang Huang,Minghua Deng,Liqiang Nie,Zhouchen Lin,Xian-Sheng Hua
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2104.01429
摘要

Recently, some contrastive learning methods have been proposed to simultaneously learn representations and clustering assignments, achieving significant improvements. However, these methods do not take the category information and clustering objective into consideration, thus the learned representations are not optimal for clustering and the performance might be limited. Towards this issue, we first propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering~(GCC) method. Different from basic contrastive clustering that only assumes an image and its augmentation should share similar representation and clustering assignments, we lift the instance-level consistency to the cluster-level consistency with the assumption that samples in one cluster and their augmentations should all be similar. Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features. On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments. Both of them incorporate the latent category information to reduce the intra-cluster variance while increasing the inter-cluster variance. Experiments on six commonly used datasets demonstrate the superiority of our proposed approach over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖听莲完成签到,获得积分10
1秒前
1秒前
好好发布了新的文献求助10
2秒前
3秒前
3秒前
搜集达人应助高兴断秋采纳,获得10
3秒前
淡定友有完成签到,获得积分10
3秒前
霸气靖雁发布了新的文献求助10
3秒前
3秒前
阳佟雨南完成签到,获得积分10
4秒前
清源君子居完成签到,获得积分10
4秒前
haix应助gaoww采纳,获得10
5秒前
温暖听莲发布了新的文献求助10
5秒前
CodeCraft应助虚拟初之采纳,获得10
5秒前
随机昵称完成签到,获得积分10
5秒前
lc339发布了新的文献求助10
6秒前
烟花应助靓仔要亮采纳,获得10
6秒前
6秒前
天天向上发布了新的文献求助10
7秒前
肥而不腻的羚羊完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
竹米完成签到,获得积分20
8秒前
情怀应助好好采纳,获得10
8秒前
所所应助00采纳,获得10
9秒前
9秒前
愤怒的梦曼完成签到,获得积分10
9秒前
研究僧发布了新的文献求助10
9秒前
杨惠文发布了新的文献求助10
10秒前
温暖书文完成签到,获得积分10
10秒前
黄俊发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
AoAoo发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Layered double hydroxides: present and futureV. Rives (Ed.), Nova Science Publishers, Inc., New York, 2001, IX+439 pp., ISBN 1-59033-060-9 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836030
求助须知:如何正确求助?哪些是违规求助? 3378407
关于积分的说明 10504183
捐赠科研通 3097886
什么是DOI,文献DOI怎么找? 1706200
邀请新用户注册赠送积分活动 820848
科研通“疑难数据库(出版商)”最低求助积分说明 772304