Improving ultra-fast charging performance and durability of all solid state thin film Li-NMC battery-on-chip systems by in situ TEM lamella analysis

阴极 材料科学 电池(电) 阳极 电解质 耐久性 板层(表面解剖学) 薄膜 光电子学 复合材料 纳米技术 电气工程 电极 化学 工程类 物理 量子力学 物理化学 功率(物理)
作者
León Romano Brandt,Kazunori Nishio,Enrico Salvati,Kevin Simon,Chrysanthi Papadaki,Taro Hitosugi,Alexander M. Korsunsky
出处
期刊:Applied Materials Today [Elsevier BV]
卷期号:26: 101282-101282 被引量:7
标识
DOI:10.1016/j.apmt.2021.101282
摘要

All solid state, thin film Li-NMC batteries produced by Physical Vapour Deposition have the potential to revolutionize the internet of things by integrating ultra-fast charging and high energy densities into small portable devices. In these systems, the integrity of the cathode-solid electrolyte interface is of particular importance, as it determines the internal battery resistance and attainable charge rate. To understand and control the effect of manufacturing parameters on the performance and interface stability in these systems, as well as the mechanisms resulting in interface degradation, a novel approach was used that combined in situ battery lamella charging with electron nano-diffraction and multiphysics Finite Element modeling. Experimentally observed cathode strains and degradation were correlated with deposition parameter-controlled grain orientation, to determine ideal deposition conditions for enhanced thin film battery charging and discharging behavior. It was identified that (104) oriented cathode grains minimize anode-electrolyte interface degradation, while allowing for high charge and discharge rates, as well as significantly reducing the cathode-electrolyte interface resistance. Furthermore, the residual stress state of individual thin film battery layers, as well as the cathode grain orientation were identified as material design parameters to optimize cell performance and durability with potential capacity retention enhancements of up to 28%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逗我的人继续逗我完成签到,获得积分10
2秒前
虚心的幻梅完成签到 ,获得积分10
2秒前
4秒前
科研通AI5应助不期采纳,获得10
4秒前
HJJHJH发布了新的文献求助10
4秒前
泛泛之交发布了新的文献求助10
4秒前
跳跃的一凤完成签到,获得积分10
4秒前
4秒前
若初拾光发布了新的文献求助10
5秒前
杰克李李完成签到,获得积分10
7秒前
7秒前
kk完成签到,获得积分10
7秒前
doctorzeng发布了新的文献求助10
8秒前
无人扶我青云志应助Steven采纳,获得10
10秒前
斯文败类应助CK先森采纳,获得10
11秒前
田様应助Kevin采纳,获得10
12秒前
科研通AI6应助HJJHJH采纳,获得10
13秒前
泠月完成签到,获得积分10
13秒前
穆仰发布了新的文献求助10
14秒前
深情安青应助若初拾光采纳,获得10
15秒前
九月完成签到,获得积分10
15秒前
江湖夜雨完成签到,获得积分10
15秒前
ding应助骨科老曺采纳,获得10
16秒前
lee完成签到 ,获得积分10
16秒前
无语的从彤完成签到,获得积分10
16秒前
呆呆关注了科研通微信公众号
16秒前
留长发的耳机完成签到,获得积分10
19秒前
20秒前
顾得白白完成签到,获得积分10
21秒前
21秒前
23秒前
Ustinian发布了新的文献求助10
24秒前
24秒前
震动的雅柔完成签到,获得积分10
25秒前
凡仔完成签到,获得积分10
25秒前
小二郎应助科研王子采纳,获得10
25秒前
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4476178
求助须知:如何正确求助?哪些是违规求助? 3934338
关于积分的说明 12206351
捐赠科研通 3588931
什么是DOI,文献DOI怎么找? 1973352
邀请新用户注册赠送积分活动 1010890
科研通“疑难数据库(出版商)”最低求助积分说明 904532