Low-cost lumped parameter modelling of hydrogen storage in solid-state materials

环空(植物学) 氢气储存 机械 瞬态(计算机编程) 材料科学 计算流体力学 分数(化学) 核工程 热力学 解吸 控制理论(社会学) 工艺工程 环境科学 化学 工程类 计算机科学 复合材料 吸附 物理 有机化学 控制(管理) 人工智能 操作系统
作者
Chunsheng Wang,Joshua Brinkerhoff
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:251: 115005-115005 被引量:12
标识
DOI:10.1016/j.enconman.2021.115005
摘要

A low-cost lumped parameter model (LPM) is developed to simulate hydrogen storage in solid-state materials. The proposed LPM is a zero-dimensional model based on an analogous transient thermal resistance network that considers the whole storage system as a resistor–capacitor (RC) circuit with a current source. Combined with the mass conservation, sorption kinetics, and equation of state, the LPM is capable of predicting key thermofluidic quantities of the storage system, such as the storage bed temperature and pressure, hydrogen fraction and flowrate, and storage tank temperature. To test the applicability of the LPM, chemisorptive (Mg and LaNi5) and physisorptive (activated carbon) solid-state materials are simulated for adsorption and desorption processes. For both material types, LPM achieves predictive accuracies comparable to three-dimensional computational fluid dynamics (CFD) simulations, especially for hydrogen fraction and storage times (with maximum errors less than 9.6%), for a fraction of the computational cost (23,734 times lower memory requirement and 126 times faster calculation time). In addition, several formulations of the bed thermal resistance are proposed and discussed in terms of their impact on the accuracy of the LPM predictions. For slender cylindrical tanks, an equivalent annulus formula achieves the best balance of simplicity and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意溪流发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
许甜甜鸭应助笑点低黄豆采纳,获得10
3秒前
4秒前
hanchangcun发布了新的文献求助10
4秒前
Zyan完成签到,获得积分10
5秒前
JamesPei应助大力的百合采纳,获得10
5秒前
Lucas应助yanziwu94采纳,获得10
5秒前
趣多多发布了新的文献求助20
5秒前
6秒前
7秒前
9秒前
笑点低黄豆完成签到,获得积分10
9秒前
Friend_ship完成签到,获得积分10
10秒前
liu发布了新的文献求助10
12秒前
爆米花应助xpf采纳,获得10
13秒前
14秒前
14秒前
mmmmm完成签到,获得积分10
16秒前
闫132完成签到,获得积分10
16秒前
舒适的曼寒完成签到,获得积分10
16秒前
19秒前
清风朗月完成签到,获得积分10
20秒前
lishiyu666应助123566采纳,获得10
21秒前
科研通AI5应助zhaobo采纳,获得10
21秒前
碧蓝冥完成签到,获得积分10
21秒前
kxm完成签到,获得积分10
21秒前
qqqq发布了新的文献求助10
22秒前
sycsyc完成签到,获得积分10
23秒前
23秒前
orixero应助杨咩咩采纳,获得10
24秒前
斯文败类应助Sun采纳,获得10
25秒前
彭于晏应助kxm采纳,获得10
25秒前
DC完成签到,获得积分10
27秒前
yanziwu94发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319