Machine Learning Techniques for Knowledge Tracing: A Systematic Literature Review

计算机科学 追踪 数学教育 人工智能 数据科学 系统回顾 心理学 政治学 操作系统 法学 梅德林
作者
Sergio Iván Ramírez Luelmo,Nour El Mawas,Jean Heutte
出处
期刊:International Conference on Computer Supported Education 被引量:8
标识
DOI:10.5220/0010515500600070
摘要

Machine Learning (ML) techniques are being intensively applied in educational settings. They are employed to predict competences and skills, grade exams, recognize behavioural academic patterns, evaluate open answers, suggest appropriate educational resources, and group or associate students with similar learning characteristics or academic interests. Knowledge Tracing (KT) allows modelling the learner's mastery of skill and to meaningfully predict student’s performance, as it tracks within the Learner Model (LM) the knowledge state of students based on observed outcomes from their previous educational practices, such as answers, grades and/or behaviours. In this study, we survey commonly used ML techniques for KT figuring in 51 papers on the topic, out of an original search pool of 628 articles from 5 renowned academic sources, encompassing the latest research, based on the PRISMA method. We identify and review relevant aspects of ML for KT in LM that help paint a more accurate panorama on the topic and hence, contribute to alleviate the difficulty of choosing an appropriate ML technique for KT in LM. This work is dedicated to MOOC designers/providers, pedagogical engineers and researchers who need an overview of existing ML techniques for KT in LM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yanziwu94完成签到,获得积分10
1秒前
木今完成签到,获得积分10
2秒前
尉迟冰蓝发布了新的文献求助10
3秒前
3秒前
Jasper应助lll采纳,获得10
4秒前
黯淡星完成签到,获得积分10
4秒前
zzh完成签到,获得积分10
4秒前
科研通AI5应助信念采纳,获得10
4秒前
认真的映安完成签到,获得积分10
5秒前
5秒前
飘逸的青雪完成签到,获得积分10
5秒前
追梦完成签到,获得积分10
6秒前
6秒前
百里丹珍发布了新的文献求助10
6秒前
无花果应助哈哈采纳,获得10
6秒前
7秒前
花满楼完成签到,获得积分10
7秒前
石翎完成签到,获得积分10
7秒前
桐桐应助wd采纳,获得10
7秒前
dove_min070809完成签到,获得积分10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
iNk应助科研通管家采纳,获得10
8秒前
iNk应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得30
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
彭于晏应助第七封信采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
残幻应助科研通管家采纳,获得10
9秒前
望除应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得10
9秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857