亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Visually Explainable Deep Learning Model for Classification of C-shaped Canals of the Mandibular Second Molars in Periapical and Panoramic Dental Radiographs

臼齿 射线照相术 医学 牙科 下颌第二磨牙 口腔正畸科 根管 下颌管 锥束ct 计算机断层摄影 下颌骨(节肢动物口器) 下颌磨牙 下颌第一磨牙 计算机断层摄影术 放射科 生物 植物
作者
Sujin Yang,Hagyeong Lee,Byounghan Jang,Kee‐Deog Kim,Jenny J. Kim,Hwiyoung Kim,Wonse Park
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:48 (7): 914-921 被引量:27
标识
DOI:10.1016/j.joen.2022.04.007
摘要

The purpose of this study was to develop and validate a visually explainable deep learning model for the classification of C-shaped canals of the mandibular second molars in dental radiographs.The periapical and panoramic images of 1000 mandibular second molars were collected from 372 patients. The diagnostic performance of the deep learning system using periapical and panoramic radiographs was investigated in respect to its ability to determine whether the second mandibular molar showed a C-shaped canal configuration. The assessment of the canal configuration of cone-beam computed tomographic volumes from 372 patients (740 mandibular second molars) was used as a gold standard.The deep convolutional neural network algorithm model showed high accuracy in predicting the C-shaped canal variation among mandibular second molars in both periapical and panoramic images. The model demonstrated best results when using image patches including only the root portion of the tooth and when using both periapical and panoramic images for training (area under the curve [AUC] = 0.99). The model's diagnostic performance using only the root portion of the tooth (AUC: periapical = 0.98 and panoramic = 0.95) was similar to a specialist (AUC: periapical = 0.95 and panoramic = 0.96) and better than a novice general clinician (AUC: periapical = 0.89 and panoramic = 0.91). Both the specialist and general clinician showed better diagnostic performance when reading panoramic radiographs compared with periapical images.With further optimization of the test data using a larger data set and improvements made in the model, a deep learning system may be expected to effectively diagnose C-shaped canals and aid clinicians in practice and education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L_MD完成签到,获得积分10
10秒前
乐生完成签到,获得积分10
11秒前
StonesKing完成签到,获得积分10
11秒前
35秒前
梦追阳完成签到 ,获得积分10
38秒前
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
个性归尘应助学术大拿采纳,获得200
1分钟前
xixi完成签到 ,获得积分0
2分钟前
leo完成签到 ,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
鲁丁丁完成签到 ,获得积分10
3分钟前
绫艾完成签到,获得积分10
3分钟前
站在巨人的肩膀上完成签到,获得积分10
3分钟前
3分钟前
Ava应助科研通管家采纳,获得30
3分钟前
Shego完成签到,获得积分10
3分钟前
云母完成签到 ,获得积分10
4分钟前
星辰大海应助动听文轩采纳,获得10
4分钟前
轻松小张完成签到,获得积分10
4分钟前
Lee发布了新的文献求助10
4分钟前
六六完成签到 ,获得积分10
4分钟前
4分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
大个应助科研通管家采纳,获得30
5分钟前
5分钟前
ppppppp_76完成签到 ,获得积分10
5分钟前
5分钟前
yofluenza发布了新的文献求助10
5分钟前
章鱼完成签到,获得积分10
6分钟前
6分钟前
Cheng发布了新的文献求助10
6分钟前
vrellik发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833755
求助须知:如何正确求助?哪些是违规求助? 3376192
关于积分的说明 10492292
捐赠科研通 3095787
什么是DOI,文献DOI怎么找? 1704713
邀请新用户注册赠送积分活动 820077
科研通“疑难数据库(出版商)”最低求助积分说明 771810