Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts

心理学 医疗保健 渐晕 感知 资源配置 社会心理学 主题分析 结果(博弈论) 非人性化 知识管理 计算机科学 定性研究 社会学 政治学 计算机网络 社会科学 数学 数理经济学 神经科学 人类学 法学
作者
Paul Formosa,Wendy Rogers,Yannick Griep,Sarah Bankins,Deborah Richards
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:133: 107296-107296 被引量:110
标识
DOI:10.1016/j.chb.2022.107296
摘要

Forms of Artificial Intelligence (AI) are already being deployed into clinical settings and research into its future healthcare uses is accelerating. Despite this trajectory, more research is needed regarding the impacts on patients of increasing AI decision making. In particular, the impersonal nature of AI means that its deployment in highly sensitive contexts-of-use, such as in healthcare, raises issues associated with patients' perceptions of (un)dignified treatment. We explore this issue through an experimental vignette study comparing individuals' perceptions of being treated in a dignified and respectful way in various healthcare decision contexts. Participants were subject to a 2 (human or AI decision maker) x 2 (positive or negative decision outcome) x 2 (diagnostic or resource allocation healthcare scenario) factorial design. We found evidence of a "human bias" (i.e., a preference for human over AI decision makers) and an "outcome bias" (i.e., a preference for positive over negative outcomes). However, we found that for perceptions of respectful and dignified interpersonal treatment, it matters more who makes the decisions in diagnostic cases and it matters more what the outcomes are for resource allocation cases. We also found that humans were consistently viewed as appropriate decision makers and AI was viewed as dehumanizing, and that participants perceived they were treated better when subject to diagnostic as opposed to resource allocation decisions. Thematic coding of open-ended text responses supported these results. We also outline the theoretical and practical implications of these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦屿森发布了新的文献求助10
刚刚
愿学的都会完成签到,获得积分10
1秒前
鬼眼刀狂完成签到,获得积分10
1秒前
田三毛完成签到,获得积分10
1秒前
howudoin完成签到,获得积分10
1秒前
Mojito完成签到,获得积分10
1秒前
Song完成签到 ,获得积分10
2秒前
T拐拐发布了新的文献求助10
2秒前
轻松盼雁完成签到,获得积分10
2秒前
揽月yue完成签到,获得积分10
3秒前
lzw完成签到,获得积分10
3秒前
朝阳完成签到,获得积分10
4秒前
聪明映菡发布了新的文献求助10
4秒前
5秒前
Mojito发布了新的文献求助10
5秒前
林中鹿完成签到,获得积分10
5秒前
5秒前
z!完成签到 ,获得积分10
5秒前
田三毛发布了新的文献求助20
6秒前
7秒前
Yvonne完成签到,获得积分10
7秒前
适可而止完成签到,获得积分10
7秒前
8秒前
雪饼完成签到,获得积分10
8秒前
8秒前
悲凉的孤菱完成签到,获得积分10
9秒前
琉璃完成签到,获得积分10
9秒前
Posit发布了新的文献求助10
9秒前
10秒前
10秒前
艾妮吗完成签到,获得积分10
10秒前
打打应助ven采纳,获得10
11秒前
Meyako应助杨振宇采纳,获得10
11秒前
11秒前
蓝幻雷发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
彭于晏应助若晨采纳,获得10
13秒前
13秒前
充电宝应助水电费采纳,获得10
14秒前
wh222222发布了新的文献求助10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445925
求助须知:如何正确求助?哪些是违规求助? 4555131
关于积分的说明 14249821
捐赠科研通 4477403
什么是DOI,文献DOI怎么找? 2453266
邀请新用户注册赠送积分活动 1444039
关于科研通互助平台的介绍 1420008