Pathological categorization of lung carcinoma from multimodality images using convolutional neural networks

肺癌 卷积神经网络 放射科 医学 正电子发射断层摄影术 病态的 腺癌 人工智能 计算机科学 癌症 病理 内科学
作者
Chinnu Jacob,Gopakumar Chandrasekhara Menon
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (5): 1681-1695 被引量:10
标识
DOI:10.1002/ima.22684
摘要

Abstract Accurate diagnosis and treatment of lung carcinoma depend on its pathological type and staging. Normally, pathological analysis is performed either by needle biopsy or surgery. Therefore, a noninvasive method to detect pathological types would be a good alternative. Hence, this work aims at categorizing different types of lung cancer from multimodality images. The proposed approach involves two stages. Initially, a Blind/Referenceless Image Spatial Quality Evaluator‐based approach is adopted to extract the slices having lung abnormalities from the dataset. The slices then are transferred to a novel shallow convolutional neural network model to detect adenocarcinoma, squamous cell carcinoma, and small cell carcinoma from multimodality images. The classifier efficacy is then investigated by comparing precision, recall, area under curve, and accuracy with pretrained models and existing methods. The results narrate that the suggested system outperformed with a testing accuracy of 95% in Positron emission tomography/computed tomography (PET/CT), 93% in CT images of the Lung‐PET‐CT‐DX dataset, and 98% in the Lung3 dataset. Furthermore, a kappa score of 0.92 in PET/CT of Lung‐PETCT‐DX and 0.98 in CT of Lung3 exhibited the effectiveness of the presented system in the field of lung cancer classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真的不想干活了完成签到,获得积分10
刚刚
tsai完成签到,获得积分10
刚刚
xiaosun发布了新的文献求助30
1秒前
1s完成签到,获得积分10
2秒前
4秒前
4秒前
5秒前
5秒前
乌鸦坐飞机完成签到,获得积分10
5秒前
思源应助mmol采纳,获得10
5秒前
6秒前
wwyy应助无心的仙人掌采纳,获得10
6秒前
log完成签到,获得积分10
6秒前
JamesPei应助单身的凡雁采纳,获得10
7秒前
江逾白发布了新的文献求助10
8秒前
啊强完成签到 ,获得积分10
8秒前
默默鞋子发布了新的文献求助10
9秒前
Rez完成签到,获得积分10
10秒前
10秒前
bearhong发布了新的文献求助10
11秒前
CipherSage应助天天开心采纳,获得10
11秒前
11秒前
zhzzhz完成签到,获得积分10
12秒前
XXHH完成签到,获得积分10
15秒前
繁星完成签到,获得积分10
17秒前
17秒前
17秒前
欧气青年完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
核桃应助WWQ采纳,获得10
19秒前
SciGPT应助Kikisman采纳,获得10
19秒前
ever完成签到,获得积分10
19秒前
坚果燕麦完成签到,获得积分10
19秒前
chongtse应助bkppforever采纳,获得10
20秒前
FashionBoy应助江逾白采纳,获得10
21秒前
21秒前
坚果燕麦发布了新的文献求助10
21秒前
搭碰完成签到,获得积分10
23秒前
大模型应助乆乆乆乆采纳,获得10
24秒前
Owen应助WWQ采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4862198
求助须知:如何正确求助?哪些是违规求助? 4156214
关于积分的说明 12883915
捐赠科研通 3908179
什么是DOI,文献DOI怎么找? 2146981
邀请新用户注册赠送积分活动 1165858
关于科研通互助平台的介绍 1068033