材料科学
全息术
光学
全息数据存储
光致聚合物
光记录
热膨胀
热的
堆栈(抽象数据类型)
变形(气象学)
复合材料
聚合
光电子学
聚合物
计算机科学
物理
气象学
程序设计语言
作者
Friedrich‐Karl Bruder,Thomas Fäcke,Thomas Rölle
出处
期刊:Photonics
[Multidisciplinary Digital Publishing Institute]
日期:2021-12-18
卷期号:8 (12): 589-589
被引量:1
标识
DOI:10.3390/photonics8120589
摘要
In this study we investigated the undesired but possible fringe formation during the recording of large size holographic optical elements (HOE) using a dry photopolymer. We identified the deformation of the recording element during hologram exposure as the main source for this fringe formation. This deformation is caused mainly by the one-sided heating of the recording element, namely, the dry photopolymer–recording plate stack. It turned out that the main source for this heating was the heat of polymerization in the dry photopolymer released during the exposure interval. These insights were translated into a physical model with which quantitative predictions about thermal fringe formation can be made depending on the actual HOE recording geometry, recording conditions and characteristics of the dry photopolymer. Using this model, different types of large size HOEs, used as components to generate a steerable confined view box for a 23” diagonal size display demonstrator, could be recorded successfully without thermal fringe formation. Key strategies to avoid thermal fringe formation deduced from this model include balancing the ratio of lateral recording plate dimension R to its thickness h, recording the power density P or equivalently the exposure time texp at a fixed recording dosage E, and most importantly recording the the linear coefficient of thermal expansion (CTE) of the recording plate material. Suitable glass plates with extremely low CTE were identified and used for recording of the above-mentioned HOEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI