Automatic stomata recognition and measurement based on improved YOLO deep learning model and entropy rate superpixel algorithm

人工智能 深度学习 计算机科学 模式识别(心理学) 熵(时间箭头) 机器学习 算法 量子力学 物理
作者
Fan Zhang,Fangtao Ren,Jieping Li,Xinhong Zhang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101521-101521 被引量:29
标识
DOI:10.1016/j.ecoinf.2021.101521
摘要

The traditional methods of analyzing stomatal traits are mostly manual observation and measurement. These methods are time-consuming, labor-intensive, and inefficient. Some methods have been proposed for the automatic recognition and counting of stomata, however most of those methods could not complete the automatic measurement of stomata parameters at the same time. Some non-deep learning methods could automatically measure the parameters of stomata, but they could not complete the automatic recognition and detection of stomata. In this paper, a deep learning-based method was proposed for automatically identifying, counting and measuring stomata of maize (Zea mays L.) leaves at the same time. An improved YOLO (You Only Look Once) deep learning model was proposed to identify stomata of maize leaves automatically, and an entropy rate superpixel algorithm was used for the accurate measurement of stomatal parameters. According to the characteristics of the stomata images data set, the network structure of YOLOv5 was modified, which greatly reduced the training time without affecting the recognition performance. The predictor in YOLO deep learning model was optimized, which reduced the false detection rate. At the same time, the 16-fold and 32-fold down-sampling layers were simplified according to the characteristics of stomatal objects, which improved the recognition efficiency. Experimental results showed that the recognition precision of the improved YOLO deep learning model reached 95.3% on the maize leaves stomatal data set, and the average accuracy of parameter measurement reached 90%. The proposed method could fully automatically complete the recognition, counting and measurement of stomata of plants, which can help agricultural scientists and botanists to conduct large-scale researches of stomatal morphology, structure and physiology, as well as the researches combined with genetic analysis or molecular-level analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多边形完成签到 ,获得积分10
刚刚
2323完成签到,获得积分10
1秒前
magic_sweets完成签到,获得积分10
1秒前
贺贺发布了新的文献求助10
1秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
一锅炖不下完成签到 ,获得积分10
2秒前
隐形的乐枫完成签到,获得积分10
3秒前
LuckyMM完成签到 ,获得积分10
3秒前
美丽凡阳完成签到,获得积分10
4秒前
风之飘渺者也完成签到,获得积分10
5秒前
啊啊啊啊完成签到,获得积分10
5秒前
5秒前
彩虹屁完成签到,获得积分10
5秒前
做实验的猹完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
小艾完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
小小鱼儿完成签到,获得积分10
8秒前
y炎炎完成签到,获得积分10
8秒前
8秒前
8秒前
ahua15s完成签到,获得积分10
9秒前
猪猪hero发布了新的文献求助10
10秒前
Math4396完成签到 ,获得积分10
10秒前
迷你的冰巧完成签到,获得积分10
11秒前
11秒前
oaixlittle完成签到,获得积分10
12秒前
机器猫nzy完成签到,获得积分10
12秒前
左江夜渔人关注了科研通微信公众号
13秒前
玛卡巴卡完成签到 ,获得积分10
13秒前
TBI发布了新的文献求助10
13秒前
1234发布了新的文献求助10
14秒前
顺心的书包完成签到,获得积分10
15秒前
nice1025完成签到,获得积分10
15秒前
Lucky小M完成签到,获得积分10
16秒前
苏楠完成签到 ,获得积分10
16秒前
DokiOkey发布了新的文献求助10
17秒前
Zhou完成签到,获得积分10
17秒前
chenyunxia完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658585
求助须知:如何正确求助?哪些是违规求助? 4823058
关于积分的说明 15082066
捐赠科研通 4817100
什么是DOI,文献DOI怎么找? 2577982
邀请新用户注册赠送积分活动 1532740
关于科研通互助平台的介绍 1491484