人工智能
深度学习
计算机科学
模式识别(心理学)
熵(时间箭头)
机器学习
算法
量子力学
物理
作者
Fan Zhang,Fangtao Ren,Jieping Li,Xinhong Zhang
标识
DOI:10.1016/j.ecoinf.2021.101521
摘要
The traditional methods of analyzing stomatal traits are mostly manual observation and measurement. These methods are time-consuming, labor-intensive, and inefficient. Some methods have been proposed for the automatic recognition and counting of stomata, however most of those methods could not complete the automatic measurement of stomata parameters at the same time. Some non-deep learning methods could automatically measure the parameters of stomata, but they could not complete the automatic recognition and detection of stomata. In this paper, a deep learning-based method was proposed for automatically identifying, counting and measuring stomata of maize (Zea mays L.) leaves at the same time. An improved YOLO (You Only Look Once) deep learning model was proposed to identify stomata of maize leaves automatically, and an entropy rate superpixel algorithm was used for the accurate measurement of stomatal parameters. According to the characteristics of the stomata images data set, the network structure of YOLOv5 was modified, which greatly reduced the training time without affecting the recognition performance. The predictor in YOLO deep learning model was optimized, which reduced the false detection rate. At the same time, the 16-fold and 32-fold down-sampling layers were simplified according to the characteristics of stomatal objects, which improved the recognition efficiency. Experimental results showed that the recognition precision of the improved YOLO deep learning model reached 95.3% on the maize leaves stomatal data set, and the average accuracy of parameter measurement reached 90%. The proposed method could fully automatically complete the recognition, counting and measurement of stomata of plants, which can help agricultural scientists and botanists to conduct large-scale researches of stomatal morphology, structure and physiology, as well as the researches combined with genetic analysis or molecular-level analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI