Automated Assessment of Psychiatric Disorders Using Speech: A Systematic Review

精神分裂症(面向对象编程) 系统回顾 焦虑 心理学 精神科 萧条(经济学) 临床心理学 双相情感障碍 心理健康 医学
作者
Daniel M. Low,Kate H. Bentley,Satrajit S Ghosh
标识
DOI:10.31219/osf.io/5pwze
摘要

Objective: There are many barriers to accessing mental health assessments including cost and stigma. Even when individuals receive professional care, assessments are intermittent and may be limited partly due to the episodic nature of psychiatric symptoms. Therefore, machine learning technology using speech samples obtained in the clinic or remotely could one day be a biomarker to improve diagnosis and treatment. To date, reviews have only focused on using acoustic features from speech to detect depression and schizophrenia. Here we present the first systematic review of studies using speech for automated assessments across a broader range of psychiatric disorders.Methods: We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. We included studies from the last 10 years using speech to identify the presence or severity of disorders within the Diagnostic and Statistical Manual of Mental Disorders (DSM–5). For each disorder we describe sample size, clinical evaluation method, speech-eliciting tasks, machine learning methodology, performance, and other relevant findings. Results: 1395 studies were screened of which 127 studies met the inclusion criteria. The majority of studies were on depression, schizophrenia, and bipolar disorder, and the remaining on post-traumatic stress disorder, anxiety disorders, and eating disorders. 63% of studies built machine learning predictive models, and the remaining 37% performed null-hypothesis testing only. We provide an online database with our search results and synthesize how acoustic features appear in each disorder.Conclusion: Speech processing technology could aid mental health assessments, but there are many obstacles to overcome, especially the need for comprehensive transdiagnostic and longitudinal studies. Given the diverse types of datasets, feature extraction, computational methodologies, and evaluation criteria, we provide guidelines for both acquiring data and building machine learning models with a focus on testing hypotheses, open science, reproducibility, and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dudu10000完成签到,获得积分10
1秒前
科研通AI5应助长安宁采纳,获得10
2秒前
细心的代天完成签到 ,获得积分10
6秒前
range关注了科研通微信公众号
7秒前
zhl发布了新的文献求助10
7秒前
8秒前
斐嘿嘿发布了新的文献求助10
8秒前
10秒前
小趴菜发布了新的文献求助10
12秒前
zhl完成签到,获得积分10
12秒前
13秒前
Even完成签到 ,获得积分10
13秒前
追梦发布了新的文献求助10
14秒前
斐嘿嘿完成签到,获得积分10
16秒前
Shandongdaxiu发布了新的文献求助10
17秒前
小趴菜完成签到,获得积分10
17秒前
一鸣关注了科研通微信公众号
18秒前
24秒前
altaf完成签到,获得积分10
24秒前
来自山灵的风完成签到,获得积分10
25秒前
yuan完成签到 ,获得积分10
25秒前
26秒前
长琴思顾完成签到,获得积分10
26秒前
猫北发布了新的文献求助10
27秒前
高贵的思天完成签到,获得积分10
27秒前
departure完成签到,获得积分10
35秒前
阔达静曼完成签到 ,获得积分10
38秒前
believer完成签到,获得积分10
38秒前
豆子完成签到,获得积分10
41秒前
满意一曲完成签到,获得积分20
43秒前
852应助呆呆芭乐采纳,获得10
43秒前
在水一方应助诗亭采纳,获得10
45秒前
47秒前
yaoyaozi发布了新的文献求助10
50秒前
学术小天才完成签到,获得积分10
53秒前
55秒前
陈东东完成签到,获得积分10
57秒前
幸福妙柏完成签到 ,获得积分10
58秒前
威士忌www发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751