计算机科学
背景(考古学)
集合(抽象数据类型)
地貌
认知
面子(社会学概念)
经济正义
数据科学
自然语言处理
认知心理学
人工智能
认知科学
心理学
社会学
政治学
程序设计语言
社会科学
法学
神经科学
古生物学
生物
人类学
标识
DOI:10.1145/3488560.3498370
摘要
In the first part we address four current specific challenges through examples: (1) discrimination (e.g., facial recognition, justice, sharing economy, language models); (2) stupid models (e.g., lack of semantic and context understanding); (3) physiognomy (e.g., facial bio-metrics based predictions); and (4) indiscriminate use of computing resources (e.g., large language models). These examples do have a personal bias but set the context for the second part where we address four generic challenges: (1) too many principles, (2) cultural differences; (3) regulation and (4) our cognitive biases. We finish discussing what we can do to address these challenges in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI