热成像
自编码
拐点
材料科学
无损检测
非线性系统
特征提取
特征(语言学)
温度测量
模式识别(心理学)
人工智能
计算机科学
红外线的
人工神经网络
光学
数学
医学
语言学
哲学
物理
几何学
量子力学
放射科
作者
Kaixin Liu,Mingkai Zheng,Yi Liu,Jianguo Yang,Yuan Yao
标识
DOI:10.1109/tii.2022.3172902
摘要
Infrared thermography is an economical nondestructive testing technique for structural health monitoring of composite materials. However, the nonlinear nature of the thermographic data and the adverse effects of noise and inhomogeneous backgrounds prevent it from achieving satisfactory results. Most of the existing thermographic data analysis methods are supervised and/or linear, which, therefore, are not favorable for nonlinear feature extraction of unlabeled thermograms. In this article, a deep autoencoder thermography (DAT) method is proposed for detecting subsurface defects in composite materials. The multilayer network structure of DAT can handle nonlinear temperature profiles, and the output of the intermediate hidden layer is visualized to highlight defects. The layer-by-layer feature visualization reveals how the model extracts defect features. A loss inflection point scheme is utilized to determine a suitable depth of the model. Moreover, a new quantitative index is proposed to compare the defect detectability of different methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI