Prediction of Sound Insulation Using Artificial Neural Networks—Part II: Lightweight Wooden Façade Structures

隔音 声学 结构工程 材料科学 工程类 物理
作者
Mohamad Bader Eddin,Nikolaos-Georgios Vardaxis,Sylvain Ménard,Delphine Bard,Jean-Luc Kouyoumji
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (14): 6983-6983 被引量:11
标识
DOI:10.3390/app12146983
摘要

A prediction model based on artificial neural networks is adapted to forecast the acoustic performance of airborne sound insulation of various lightweight wooden façade walls. A total of 100 insulation curves were used to develop the prediction model. The data are laboratory measurements of façade walls in one-third-octave bands (50 Hz–5 kHz). For each façade wall, geometric and physical information (material type, dimensions, thicknesses, densities, and more) are used as input parameters. The model shows a satisfactory predictive capability for airborne sound reduction. A higher accuracy is obtained at middle frequencies (250 Hz–1 kHz), while lower and higher frequency ranges often show higher deviations. The weighted airborne sound reduction index (Rw) of façades can be estimated with a maximum difference of 3 dB. Sometimes, the model shows high variations within fundamental and critical frequencies that influence the predictive precision. A sensitivity analysis is implemented to investigate the significance of parameters in insulation estimations. The material density (i.e., cross-laminated timber panel, gypsum board), thickness of the insulation materials, thickness and spacing between interior studs and the total density of façades are factors of significant weight on predictions. The results also emphasize the importance of façade thickness and the total density of the clustered exterior layers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Kriten采纳,获得10
刚刚
郁浅应助kk采纳,获得10
刚刚
Xeno发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
xiu-er完成签到,获得积分10
2秒前
2秒前
Orange应助米酒汤圆采纳,获得10
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
大个应助潇潇采纳,获得10
8秒前
9秒前
10秒前
Lucas应助伍六七采纳,获得10
11秒前
11秒前
彪壮的机器猫完成签到,获得积分10
11秒前
求助人员发布了新的文献求助10
11秒前
Kriten发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
GuMingyang完成签到,获得积分10
14秒前
凤尾鱼发布了新的文献求助10
16秒前
16秒前
宋文祥发布了新的文献求助10
17秒前
科研通AI6应助海阔天空采纳,获得30
18秒前
米酒汤圆发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
XHT完成签到,获得积分10
20秒前
21秒前
21发布了新的文献求助10
21秒前
科研通AI6应助周浩宇采纳,获得10
22秒前
顾矜应助小猪猪采纳,获得10
25秒前
优秀的小豆芽完成签到,获得积分10
25秒前
搜集达人应助张l采纳,获得10
25秒前
25秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532485
求助须知:如何正确求助?哪些是违规求助? 4621225
关于积分的说明 14577361
捐赠科研通 4561100
什么是DOI,文献DOI怎么找? 2499151
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450357