A new shape-based clustering algorithm for time series

聚类分析 相关聚类 算法 CURE数据聚类算法 k-中位数聚类 完整的链接聚类 计算机科学 偏移量(计算机科学) 数学 单连锁聚类 系列(地层学) 亲和繁殖 模糊聚类 模式识别(心理学) 数据挖掘 人工智能 古生物学 生物 程序设计语言
作者
Yucheng Li,Derong Shen,Tiezheng Nie,Yue Kou
出处
期刊:Information Sciences [Elsevier BV]
卷期号:609: 411-428 被引量:21
标识
DOI:10.1016/j.ins.2022.07.105
摘要

• We propose to use fractional order correlation to measure the relationship between two sequences and apply the normalized form of the results to create the fractional order shape-based distance between two sequences. • We use the average sequence calculation method DBA to determine the cluster center and then combine it with our distance to cluster the time series. • We also combine our distance with the center determination strategy of other clustering algorithms to execute comparative experiments . • Experiments show that our method has improved the clustering accuracy. Our proposed distance can achieve better results when combined with a variety of strategies. At the same time, in the shape-based clustering algorithm, compared with the best KShape algorithm, we can also achieve better results. Time series clustering is a research hotspot in data mining. Most of the existing clustering algorithms combine with the classical distance measure which ignore the offset of sequence shape. As a result, shape-based clustering algorithms are becoming increasingly popular. On the majority of data sets, the most representative shape-based clustering algorithm, KShape, which defines a shape-based distance with shift invariance, has been shown to outperform other algorithms. In this paper, we propose a new shape-based clustering algorithm named Fractional Order Shape-based k-cluster(FrOKShape), which defines a multi-variable shape-based distance by normalized fractional order cross-correlation and uses the DTW Barycenter Averaging (DBA) as a center computation strategy. Our distance exhibits excellent shape shift deviating properties and good compatibility integrated with a variety of existing clustering center strategies so that it can provide more potential good results. Experiments show that combining our distance with a traditional clustering algorithm produces excellent clustering indicators. In a series of comparative experiments, FrOKShape also exhibits a comparable result to the existing better shape-based clustering algorithm KShape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的元珊完成签到 ,获得积分0
刚刚
余周周完成签到,获得积分10
刚刚
Gunpowder完成签到,获得积分10
1秒前
1秒前
lhy发布了新的文献求助10
2秒前
JMrider完成签到,获得积分10
2秒前
2秒前
zyb发布了新的文献求助10
2秒前
汉堡包应助Rookie采纳,获得10
2秒前
雷欣儿完成签到,获得积分10
3秒前
ww完成签到,获得积分10
3秒前
研友_nEWly8完成签到,获得积分10
3秒前
Aster完成签到,获得积分10
3秒前
呢n完成签到 ,获得积分10
3秒前
禾女鬼完成签到,获得积分10
3秒前
3秒前
善良的剑通完成签到,获得积分10
4秒前
酸奶七发布了新的文献求助10
4秒前
橘酥酥呀发布了新的文献求助20
4秒前
化学兔八哥完成签到,获得积分10
5秒前
Can完成签到,获得积分10
5秒前
lan完成签到,获得积分10
5秒前
5秒前
小蓝发布了新的文献求助10
5秒前
YaHaa完成签到,获得积分10
6秒前
胡立杰发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
7秒前
hd完成签到,获得积分10
7秒前
03完成签到,获得积分10
8秒前
8秒前
Lulu发布了新的文献求助10
8秒前
9秒前
shuqi完成签到,获得积分10
9秒前
小小完成签到,获得积分10
9秒前
火星上的汲完成签到 ,获得积分10
9秒前
FrozNineTivus完成签到,获得积分10
9秒前
二枫忆桑完成签到,获得积分10
10秒前
上官若男应助雷欣儿采纳,获得10
10秒前
田様应助雷欣儿采纳,获得10
10秒前
哦哦发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167