酵母
酿酒酵母
代谢工程
生物化学
生产(经济)
化学
生物技术
生物
食品科学
酶
经济
宏观经济学
作者
Nina Muratovska,Carl Grey,Magnus Carlquist
标识
DOI:10.1186/s12934-022-01831-3
摘要
Abstract Background Capsaicinoids are produced by plants in the Capsicum genus and are the main reason for the pungency of chili pepper fruits. They are strong agonists of TRPV1 (the transient receptor potential cation channel subfamily V member 1) and used as active ingredients in pharmaceuticals for the treatment of pain. The use of bioengineered microorganisms in a fermentation process may be an efficient route for their preparation, as well as for the discovery of (bio-)synthetic capsaicinoids with improved or novel bioactivities. Results Saccharomyces cerevisiae was engineered to over-express a selection of amide-forming N -acyltransferase and CoA-ligase enzyme cascades using a combinatorial gene assembly method, and was screened for nonivamide production from supplemented vanillylamine and nonanoic acid. Data from this work demonstrate that Tyramine N- hydroxycinnamoyl transferase from Capsicum annuum (CaAT) was most efficient for nonivamide formation in yeast, outcompeting the other candidates including AT3 (Pun1) from Capsicum spp. The CoA-ligase partner with highest activity from the ones evaluated here were from Petunia hybrida (PhCL) and Spingomonas sp. Ibu-2 (IpfF). A yeast strain expressing CaAT and IpfF produced 10.6 mg L −1 nonivamide in a controlled bioreactor setup, demonstrating nonivamide biosynthesis by S. cerevisiae for the first time. Conclusions Baker’s yeast was engineered for production of nonivamide as a model capsaicinoid, by expressing N -acyltransferases and CoA-ligases of plant and bacterial origin. The constructed yeast platform holds potential for in vivo biocatalytic formation of capsaicinoids and could be a useful tool for the discovery of novel drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI