止血剂
止血
羧甲基纤维素
伤口愈合
材料科学
化学
壳聚糖
抗菌活性
钠
细菌
医学
外科
生物化学
有机化学
遗传学
生物
作者
Xiao–kun Ouyang,Lijuan Zhao,Fangyuan Jiang,Junhong Ling,Li–Ye Yang,Nan Wang
标识
DOI:10.1016/j.carbpol.2022.119688
摘要
Porous microsphere hemostatic materials, which possess rapid hemostatic, antibacterial, and wound healing-promotion properties, have key advantages over hemostatic dressings with a single hemostatic function. Using rod-shaped cellulose nanocrystals as the supporting framework, sodium alginate/cellulose nanocrystal porous microspheres (SA/CNC) were prepared using an inverse emulsion method. After SA/CNC self-assembly with the antibacterial polymer ε-polylysine, the hemostatic porous microspheres (PSLMs) showed high porosity, high liquid absorption capacity, and excellent coagulation properties. The in vitro and in vivo coagulation properties of PSLMs were evaluated and compared with those of the commercially available chitosan hemostatic powder. PSLMs had marked hemostatic effects in the following mouse hemorrhage models: caudal (81.20 s), liver (48.44 s), and femoral artery (71.66 s). After the introduction of ε-polylysine with excellent antibacterial properties to PSLMs, PSLMs effectively inhibited the activities of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
科研通智能强力驱动
Strongly Powered by AbleSci AI