Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete

材料科学 抗压强度 极限抗拉强度 硅粉 复合材料 含水量 粉煤灰 纤维 胶凝的 水泥 工程类 岩土工程
作者
Dai Li,Wu Xu,Meirong Zhou,Waqas Ahmad,Mujahid Ali,Mohanad Muayad Sabri Sabri,Abdelatif Salmi,Dina Yehia Zakaria Ewais
出处
期刊:Materials [MDPI AG]
卷期号:15 (13): 4450-4450 被引量:28
标识
DOI:10.3390/ma15134450
摘要

The low tensile strain capacity and brittle nature of high-strength concrete (HSC) can be improved by incorporating steel fibers into it. Steel fibers’ addition in HSC results in bridging behavior which improves its post-cracking behavior, provides cracks arresting and stresses transfer in concrete. Using machine learning (ML) techniques, concrete properties prediction is an effective solution to conserve construction time and cost. Therefore, sophisticated ML approaches are applied in this study to predict the compressive strength of steel fiber reinforced HSC (SFRHSC). To fulfil this purpose, a standalone ML model called Multiple-Layer Perceptron Neural Network (MLPNN) and ensembled ML algorithms named Bagging and Adaptive Boosting (AdaBoost) were employed in this study. The considered parameters were cement content, fly ash content, slag content, silica fume content, nano-silica content, limestone powder content, sand content, coarse aggregate content, maximum aggregate size, water content, super-plasticizer content, steel fiber content, steel fiber diameter, steel fiber length, and curing time. The application of statistical checks, i.e., root mean square error (RMSE), determination coefficient (R2), and mean absolute error (MAE), was also performed for the assessment of algorithms’ performance. The study demonstrated the suitability of the Bagging technique in the prediction of SFRHSC compressive strength. Compared to other models, the Bagging approach was more accurate as it produced higher, i.e., 0.94, R2, and lower error values. It was revealed from the SHAP analysis that curing time and super-plasticizer content have the most significant influence on the compressive strength of SFRHSC. The outcomes of this study will be beneficial for researchers in civil engineering for the timely and effective evaluation of SFRHSC compressive strength.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a怪完成签到,获得积分10
刚刚
提拉米苏完成签到,获得积分10
刚刚
1秒前
黄文洁发布了新的文献求助10
1秒前
嘿嘿发布了新的文献求助10
2秒前
2秒前
暖暖发布了新的文献求助10
3秒前
思源应助九玖采纳,获得10
3秒前
大乐发布了新的文献求助10
4秒前
5秒前
5秒前
RR发布了新的文献求助10
5秒前
2号完成签到 ,获得积分10
5秒前
老马发布了新的文献求助10
5秒前
aaaaa驳回了传奇3应助
6秒前
查百到完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
猪猪比特发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
桐桐应助yangqi采纳,获得10
8秒前
yqwang完成签到,获得积分10
9秒前
9秒前
ding应助orchid采纳,获得10
9秒前
10秒前
xx完成签到 ,获得积分20
11秒前
11秒前
Jared应助manba采纳,获得10
11秒前
11秒前
煦暖发布了新的文献求助30
12秒前
12秒前
前世发布了新的文献求助10
12秒前
文艺的慕青应助霸气世德采纳,获得10
12秒前
12秒前
a怪发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722