亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging

神经影像学 磁共振成像 多发性硬化 医学 队列 人工智能 认知 机器学习
作者
Loredana Storelli,Matteo Azzimonti,Mor Gueye,Carmen Vizzino,Paolo Preziosa,Gioachino Tedeschi,Nicola De Stefano,Patrizia Pantano,Massimo Filippi,Maria A Rocca
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/rli.0000000000000854
摘要

Magnetic resonance imaging (MRI) is an important tool for diagnosis and monitoring of disease course in multiple sclerosis (MS). However, its prognostic value for predicting disease worsening is still being debated. The aim of this study was to propose a deep learning algorithm to predict disease worsening at 2 years of follow-up on a multicenter cohort of MS patients collected from the Italian Neuroimaging Network Initiative using baseline MRI, and compare it with 2 expert physicians.For 373 MS patients, baseline T2-weighted and T1-weighted brain MRI scans, as well as baseline and 2-year clinical and cognitive assessments, were collected from the Italian Neuroimaging Network Initiative repository. A deep learning architecture based on convolutional neural networks was implemented to predict: (1) clinical worsening (Expanded Disability Status Scale [EDSS]-based model), (2) cognitive deterioration (Symbol Digit Modalities Test [SDMT]-based model), or (3) both (EDSS + SDMT-based model). The method was tested on an independent data set and compared with the performance of 2 expert physicians.For the test set, the convolutional neural network model showed high predictive accuracy for clinical (83.3%) and cognitive (67.7%) worsening, although the highest accuracy was reached when training the algorithm using both EDSS and SDMT information (85.7%). Artificial intelligence classification performance exceeded that of 2 expert physicians (70% of accuracy for the human raters).We developed a robust and accurate model for predicting clinical and cognitive worsening of MS patients after 2 years, based on conventional T2-weighted and T1-weighted brain MRI scans obtained at baseline. This algorithm may be valuable for supporting physicians in their clinical practice for the earlier identification of MS patients at risk of disease worsening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的耳机完成签到 ,获得积分10
刚刚
1秒前
思源应助浮浮世世采纳,获得10
3秒前
7秒前
SHF发布了新的文献求助10
7秒前
整齐晓筠完成签到 ,获得积分10
15秒前
香蕉觅云应助热情的海蓝采纳,获得10
20秒前
20秒前
直菱完成签到,获得积分10
20秒前
22秒前
yingying完成签到 ,获得积分10
31秒前
熠旅完成签到,获得积分10
34秒前
12123浪发布了新的文献求助10
39秒前
Aurora发布了新的文献求助10
39秒前
42秒前
斯文败类应助激昂的如柏采纳,获得10
42秒前
45秒前
46秒前
落落洛栖完成签到 ,获得积分10
48秒前
皮戾发布了新的文献求助10
48秒前
fsznc1完成签到 ,获得积分0
49秒前
wentao发布了新的文献求助10
51秒前
55秒前
56秒前
57秒前
爱科研的GG完成签到 ,获得积分10
57秒前
自由的中蓝完成签到 ,获得积分10
59秒前
59秒前
星辰发布了新的文献求助10
59秒前
1分钟前
1分钟前
ccc完成签到 ,获得积分10
1分钟前
Max完成签到 ,获得积分10
1分钟前
浮游应助你了路采纳,获得10
1分钟前
一哗两禧发布了新的文献求助30
1分钟前
米奇完成签到 ,获得积分10
1分钟前
1分钟前
orixero应助星辰采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301672
求助须知:如何正确求助?哪些是违规求助? 4449154
关于积分的说明 13847930
捐赠科研通 4335215
什么是DOI,文献DOI怎么找? 2380208
邀请新用户注册赠送积分活动 1375181
关于科研通互助平台的介绍 1341185