材料科学
多物理
功勋
灵敏度(控制系统)
波长
表面等离子共振
等离子体子
光电子学
折射率
制作
光子晶体光纤
堆栈(抽象数据类型)
振幅
表面等离子体子
有限元法
光学
纳米技术
电子工程
物理
纳米颗粒
医学
替代医学
病理
计算机科学
工程类
热力学
程序设计语言
作者
Mohammad Rakibul Islam,Md Moinul Islam Khan,Rahbar Al Rafid,Fariha Mehjabin,Md. Shahriar Rashid,Jubair Alam Chowdhury,Nausheen Zerin,Mohibul Islam
标识
DOI:10.1016/j.sbsr.2022.100477
摘要
We present an ultra-sensitive Surface Plasmon Resonance-based Photonic Crystal Fiber (SPR-PCF) sensor that can be employed for multipurpose sensing of analyte, temperature, and magnetic field. Our prototype has a trigonal cluster-based strategic pattern of circular air holes inside the fiber and can be easily fabricated using the standard Stack-and-Draw method. Thin layers of gold (Au) and titanium dioxide (TiO2) are used as the plasmonic materials surrounding the PCF. The Finite Element Method (FEM) of the commercial software COMSOL Multiphysics 5.3a is used to estimate the sensor properties. After optimization of different parameters, we recorded a maximum Amplitude Sensitivity (AS) of 7223.62 RIU−1, a maximum wavelength sensitivity (WS) of 28,500 nm/RIU, and a leading figure of merit (FOM) of 914 RIU−1. Our sensor is capable of detecting unknown analytes within the refractive index (RI) range of 1.33 to 1.42 with sensor resolutions of 1.38 × 10−6 (amplitude) and 3.51 × 10−6 RIU (wavelength). Furthermore, it can also detect temperature and magnetic field variations with the corresponding maximum sensitivity of 1.25 nm/°C (1250 pm/°C) and 0.16 nm/Oe (160 pm/Oe). An infinitesimal change in the sensor performance was observed for the ±10% fabrication tolerance analysis. So, it can be concluded that our sensor can significantly contribute to scientific, biomedical, and industrial fields due to its supreme sensing capabilities and versatile features.
科研通智能强力驱动
Strongly Powered by AbleSci AI