奇异值分解
多线性映射
多维数据
多光谱图像
计算机科学
高光谱成像
图像(数学)
分解
人工智能
张量(固有定义)
多维分析
塔克分解
模式识别(心理学)
张量分解
计算机视觉
数学
算法
作者
Tai-Xiang Jiang,Michael K. Ng,Xi-Le Zhao
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2022-01-01
卷期号:: 31-60
标识
DOI:10.1016/b978-0-12-824447-0.00008-x
摘要
Due to the limitation of imaging conditions, observed multidimensional images (e.g., color images, video, and multispectral/hyperspectral images) are unavoidably incomplete or corrupted, hindering subsequent applications. Multidimensional image recovery, which infers the underlying multidimensional image from the degraded observation, is a fundamental problem in low-level vision. Recently, tensor singular value decomposition (t-SVD) emerged as a powerful multilinear framework for preserving the intrinsic structure of multidimensional images. In this chapter, we revisit the establishment of the t-SVD framework and some recent advances based on this approach. Next, the recent development of transform-based t-SVD for multidimensional image recovery is reviewed. Additionally, some numerical examples are provided. Finally, we summarize the trend of the developments for multidimensional image recovery within the t-SVD framework and suggest possible directions for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI