混合蒙特卡罗
蒙特卡罗方法
计算机科学
近似贝叶斯计算
计算
应用数学
马尔科夫蒙特卡洛
统计物理学
数学优化
贝叶斯概率
算法
数学
人工智能
物理
推论
统计
作者
Tianqi Chen,Emily B. Fox,Carlos Guestrin
出处
期刊:Cornell University - arXiv
日期:2014-01-01
被引量:367
标识
DOI:10.48550/arxiv.1402.4102
摘要
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.
科研通智能强力驱动
Strongly Powered by AbleSci AI