移植
小岛
免疫抑制
胰岛
细胞包封
细胞生物学
组织工程
生物医学工程
胰岛素
医学
免疫学
内分泌学
内科学
生物
作者
Marco Farina,Andrea Ballerini,Daniel Fraga,Eugenia Nicolov,Matthew Hogan,Danilo Demarchi,Francesco Scaglione,Omaima M. Sabek,Philip J. Horner,Usha Thekkedath,Osama Gaber,Alessandro Grattoni
标识
DOI:10.1002/biot.201700169
摘要
Transplantation of pancreatic islets or stem cell derived insulin secreting cells is an attractive treatment strategy for diabetes. However, islet transplantation is associated with several challenges including function-loss associated with dispersion and limited vascularization as well as the need for continuous immunosuppression. To overcome these limitations, here we present a novel 3D printed and functionalized encapsulation system for subcutaneous engraftment of islets or islet like cells. The devices were 3D printed with polylactic acid and the surfaces treated and patterned to increase the hydrophilicity, cell attachment, and proliferation. Surface treated encapsulation systems were implanted with growth factor enriched platelet gel, which helped to create a vascularized environment before loading human islets. The device protected the encapsulated islets from acute hypoxia and kept them functional. The adaptability of the encapsulation system was demonstrated by refilling some of the experimental groups transcutaneously with additional islets.
科研通智能强力驱动
Strongly Powered by AbleSci AI