A Novel Deeper One-Dimensional CNN With Residual Learning for Fault Diagnosis of Wheelset Bearings in High-Speed Trains

计算机科学 残余物 卷积神经网络 方位(导航) 深度学习 人工智能 火车 断层(地质) 模式识别(心理学) 实时计算 算法 地图学 地质学 地震学 地理
作者
Dandan Peng,Zhiliang Liu,Huan Wang,Yong Qin,Limin Jia
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 10278-10293 被引量:239
标识
DOI:10.1109/access.2018.2888842
摘要

The health condition of a wheelset bearing, the key component of a railway bogie, has a considerable impact on the safety of a train. Traditional bearing fault diagnosis techniques generally extract signals manually and then diagnose the bearing health conditions through the classifier. However, high-speed trains (HSTs) are usually faced with variable loads, variable speeds, and strong environmental noise, which pose a huge challenge to the application of the traditional bearing fault diagnosis methods in wheelset bearing fault diagnosis. Therefore, this paper proposes a 1D residual block, and based on the block, a novel deeper 1D convolutional neural network (Der-1DCNN) is proposed. The framework includes the idea of residual learning and can effectively learn high-level and abstract features while effectively alleviating the problem of training difficulty and the performance degradation of a deeper network. Additionally, for the first time, we fully use the wide convolution kernel and dropout technology to improve the model's ability to learn low-frequency signal features related to the fault components and to enhance the network's generalization performance. By constructing a deep residual learning network, Der-1DCNN can adaptively learn the deep fault features of the original vibration signal. This method not only achieves very high diagnostic accuracy for the fault diagnosis task of wheelset bearings in HSTs under strong noise environment, but also its performance is quite superior when the train's working load changes without any domain adaptation algorithm processing. The proposed Der-1DCNN is evaluated on the dataset of the multi-operating conditions of the wheelset bearings of HSTs. Experiments show that this method shows a better diagnostic performance compared with the state-of-the-art deep learning methods of bearing fault diagnosis, which proves the method's effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
1秒前
梁惊梦发布了新的文献求助10
1秒前
1秒前
2秒前
nini完成签到,获得积分10
2秒前
3秒前
Serena发布了新的文献求助30
3秒前
3秒前
小芋头发布了新的文献求助50
4秒前
CipherSage应助李李李采纳,获得10
4秒前
李健的小迷弟应助肖塑昱采纳,获得10
5秒前
Bieshiyuan发布了新的文献求助10
5秒前
绝尘发布了新的文献求助10
5秒前
鸣笛应助眯眯眼的士萧采纳,获得10
6秒前
Owen应助忧郁的雨采纳,获得10
6秒前
陈俊瑶完成签到,获得积分10
6秒前
6秒前
7秒前
777发布了新的文献求助10
8秒前
ilmiss发布了新的文献求助10
8秒前
8秒前
桐桐应助婷婷采纳,获得10
9秒前
11秒前
11秒前
咯噔发布了新的文献求助10
11秒前
科研通AI5应助含糊的鞋子采纳,获得10
12秒前
12秒前
无花果应助绝尘采纳,获得10
12秒前
13秒前
Prometheusss完成签到,获得积分10
13秒前
搞搞科研发布了新的文献求助20
13秒前
14秒前
勤奋书竹发布了新的文献求助10
15秒前
gggg应助娜娜采纳,获得10
15秒前
15秒前
Bieshiyuan完成签到,获得积分10
15秒前
1179完成签到,获得积分10
16秒前
mihriban发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Washback of the College Entrance English Exam on student perceptions of learning in a Chinese rural city 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564471
求助须知:如何正确求助?哪些是违规求助? 3988564
关于积分的说明 12350458
捐赠科研通 3659780
什么是DOI,文献DOI怎么找? 2016757
邀请新用户注册赠送积分活动 1051199
科研通“疑难数据库(出版商)”最低求助积分说明 938966