亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remove Cosine Window from Correlation Filter-based Visual Trackers: When and How

BitTorrent跟踪器 计算机科学 三角函数 正规化(语言学) 离散余弦变换 人工智能 间断(语言学) 计算机视觉 算法 模式识别(心理学) 数学 眼动 图像(数学) 几何学 数学分析
作者
Feng Li,Xiaohe Wu,Wangmeng Zuo,David Zhang,Lei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1905.06648
摘要

Correlation filters (CFs) have been continuously advancing the state-of-the-art tracking performance and have been extensively studied in the recent few years. Most of the existing CF trackers adopt a cosine window to spatially reweight base image to alleviate boundary discontinuity. However, cosine window emphasizes more on the central region of base image and has the risk of contaminating negative training samples during model learning. On the other hand, spatial regularization deployed in many recent CF trackers plays a similar role as cosine window by enforcing spatial penalty on CF coefficients. Therefore, we in this paper investigate the feasibility to remove cosine window from CF trackers with spatial regularization. When simply removing cosine window, CF with spatial regularization still suffers from small degree of boundary discontinuity. To tackle this issue, binary and Gaussian shaped mask functions are further introduced for eliminating boundary discontinuity while reweighting the estimation error of each training sample, and can be incorporated with multiple CF trackers with spatial regularization. In comparison to the counterparts with cosine window, our methods are effective in handling boundary discontinuity and sample contamination, thereby benefiting tracking performance. Extensive experiments on three benchmarks show that our methods perform favorably against the state-of-the-art trackers using either handcrafted or deep CNN features. The code is publicly available at https://github.com/lifeng9472/Removing_cosine_window_from_CF_trackers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳落雁发布了新的文献求助10
35秒前
51秒前
旷野完成签到 ,获得积分10
58秒前
zqq完成签到,获得积分0
1分钟前
周周粥完成签到 ,获得积分10
1分钟前
共享精神应助khan采纳,获得10
1分钟前
1分钟前
khan发布了新的文献求助10
1分钟前
罗玲完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助aa111采纳,获得10
2分钟前
2分钟前
nbtzy完成签到,获得积分20
2分钟前
秋日思语发布了新的文献求助10
2分钟前
2分钟前
2分钟前
luluzhu发布了新的文献求助50
2分钟前
2分钟前
栗子完成签到,获得积分10
2分钟前
多喝岩浆完成签到,获得积分10
3分钟前
水上汀州完成签到,获得积分10
3分钟前
ear发布了新的文献求助30
3分钟前
drirshad完成签到,获得积分10
3分钟前
3分钟前
aa111完成签到,获得积分10
3分钟前
可爱的函函应助lsl采纳,获得10
3分钟前
tuanheqi应助科研通管家采纳,获得80
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Lliu完成签到,获得积分10
3分钟前
科研通AI2S应助彭瑞吉采纳,获得10
4分钟前
4分钟前
aa111发布了新的文献求助10
4分钟前
4分钟前
4分钟前
搜集达人应助义气的藏鸟采纳,获得10
4分钟前
传奇3应助平常的乘云采纳,获得10
4分钟前
ccczzz应助aa111采纳,获得20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173328
求助须知:如何正确求助?哪些是违规求助? 4363268
关于积分的说明 13585271
捐赠科研通 4211673
什么是DOI,文献DOI怎么找? 2309940
邀请新用户注册赠送积分活动 1309029
关于科研通互助平台的介绍 1256358