神经影像学
计算机科学
统计参数映射
机器学习
人工智能
群体分析
参数统计
贝叶斯定理
先验概率
错误发现率
因果模型
数据科学
心理学
贝叶斯概率
神经科学
统计
数学
医学
磁共振成像
化学
放射科
生物化学
基因
社会心理学
作者
Peter Zeidman,Amirhossein Jafarian,Nadège Corbin,Mohamed L. Seghier,Adeel Razi,Cathy J. Price,Karl Friston
出处
期刊:NeuroImage
[Elsevier]
日期:2019-06-18
卷期号:200: 174-190
被引量:377
标识
DOI:10.1016/j.neuroimage.2019.06.031
摘要
Dynamic Causal Modelling (DCM) is the predominant method for inferring effective connectivity from neuroimaging data. In the 15 years since its introduction, the neural models and statistical routines in DCM have developed in parallel, driven by the needs of researchers in cognitive and clinical neuroscience. In this guide, we step through an exemplar fMRI analysis in detail, reviewing the current implementation of DCM and demonstrating recent developments in group-level connectivity analysis. In the appendices, we detail the theory underlying DCM and the assumptions (i.e., priors) in the models. In the first part of the guide (current paper), we focus on issues specific to DCM for fMRI. This is accompanied by all the necessary data and instructions to reproduce the analyses using the SPM software. In the second part (in a companion paper), we move from subject-level to group-level modelling using the Parametric Empirical Bayes framework, and illustrate how to test for commonalities and differences in effective connectivity across subjects, based on imaging data from any modality.
科研通智能强力驱动
Strongly Powered by AbleSci AI