Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction

析氧 催化作用 电化学 氧化物 化学 活动站点 金属 循环伏安法 材料科学 氧化态 无机化学 物理化学 电极 有机化学
作者
Arno Bergmann,Travis E. Jones,Elías Martínez Moreno,Detre Teschner,Petko Chernev,Manuel Gliech,Tobias Reier,Holger Dau,Peter Strasser
出处
期刊:Nature Catalysis [Nature Portfolio]
卷期号:1 (9): 711-719 被引量:501
标识
DOI:10.1038/s41929-018-0141-2
摘要

Efficient catalysts for the anodic oxygen evolution reaction (OER) are critical for electrochemical H2 production. Their design requires structural knowledge of their catalytically active sites and state. Here, we track the atomic-scale structural evolution of well-defined CoOx(OH)y compounds into their catalytically active state during electrocatalytic operation through operando and surface-sensitive X-ray spectroscopy and surface voltammetry, supported by theoretical calculations. We find clear voltammetric evidence that electrochemically reducible near-surface Co3+–O sites play an organizing role for high OER activity. These sites invariably emerge independent of initial metal valency and coordination under catalytic OER conditions. Combining experiments and theory reveals the unified chemical structure motif as µ2-OH-bridged Co2+/3+ ion clusters formed on all three-dimensional cross-linked and layered CoOx(OH)y precursors and present in an oxidized form during the OER, as shown by operando X-ray spectroscopy. Together, the spectroscopic and electrochemical fingerprints offer a unified picture of our molecular understanding of the structure of catalytically active metal oxide OER sites. Knowledge of the active sites in catalysts—including the sites that form under working conditions—is vital for future design and development. Here, the authors track the atomic-scale changes in a series of well-defined cobalt-based oxide electrocatalysts, showing that the structurally distinct catalysts develop a similar structural motif as they transform into the catalytically active state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助msli采纳,获得10
4秒前
tes完成签到,获得积分10
8秒前
10秒前
小马甲应助称心的笑阳采纳,获得10
12秒前
12秒前
13秒前
Umar发布了新的文献求助10
14秒前
橘橘橘橘橘完成签到 ,获得积分10
16秒前
karL完成签到,获得积分10
16秒前
萝卜完成签到 ,获得积分10
16秒前
比大家发布了新的文献求助10
16秒前
msli发布了新的文献求助10
16秒前
23秒前
ZOEY完成签到,获得积分10
23秒前
国庆完成签到,获得积分10
24秒前
26秒前
1111完成签到,获得积分10
29秒前
yaning2022发布了新的文献求助10
29秒前
田様应助NXK采纳,获得10
30秒前
vegetable发布了新的文献求助10
31秒前
不摸鱼上啥班完成签到,获得积分10
32秒前
国庆发布了新的文献求助10
34秒前
36秒前
gstsgd关注了科研通微信公众号
39秒前
41秒前
科研通AI5应助Abiu采纳,获得10
42秒前
uppsala完成签到,获得积分10
43秒前
44秒前
NXK发布了新的文献求助10
44秒前
48秒前
vovoking完成签到 ,获得积分10
48秒前
49秒前
高大怀梦完成签到 ,获得积分10
51秒前
sparks发布了新的文献求助10
53秒前
53秒前
Bobby完成签到,获得积分20
57秒前
所所应助月夙采纳,获得10
57秒前
gstsgd发布了新的文献求助10
58秒前
1分钟前
18°N天水色完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776633
求助须知:如何正确求助?哪些是违规求助? 3322152
关于积分的说明 10208826
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757921