YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception

计算机科学 成对比较 目标检测 人工智能 计算复杂性理论 模式识别(心理学) 杠杆(统计) 代表(政治) 编码(集合论) 核(代数) 稳健性(进化) 利用 特征(语言学) 卷积(计算机科学) 相关性 视觉对象识别的认知神经科学 对象(语法) 特征提取 联营 数据挖掘 机器学习 卷积神经网络 算法 行人检测 特征学习 分割 计算机视觉 源代码 Lift(数据挖掘)
作者
Lei, Mengqi,Li, Siqi,Wu, Yihong,Hu, Han,Zhou, You,Zheng, Xinhu,Ding, Guiguang,Du, Shaoyi,Wu, Zongze,Gao, Yue
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.2506.17733
摘要

The YOLO series models reign supreme in real-time object detection due to their superior accuracy and computational efficiency. However, both the convolutional architectures of YOLO11 and earlier versions and the area-based self-attention mechanism introduced in YOLOv12 are limited to local information aggregation and pairwise correlation modeling, lacking the capability to capture global multi-to-multi high-order correlations, which limits detection performance in complex scenarios. In this paper, we propose YOLOv13, an accurate and lightweight object detector. To address the above-mentioned challenges, we propose a Hypergraph-based Adaptive Correlation Enhancement (HyperACE) mechanism that adaptively exploits latent high-order correlations and overcomes the limitation of previous methods that are restricted to pairwise correlation modeling based on hypergraph computation, achieving efficient global cross-location and cross-scale feature fusion and enhancement. Subsequently, we propose a Full-Pipeline Aggregation-and-Distribution (FullPAD) paradigm based on HyperACE, which effectively achieves fine-grained information flow and representation synergy within the entire network by distributing correlation-enhanced features to the full pipeline. Finally, we propose to leverage depthwise separable convolutions to replace vanilla large-kernel convolutions, and design a series of blocks that significantly reduce parameters and computational complexity without sacrificing performance. We conduct extensive experiments on the widely used MS COCO benchmark, and the experimental results demonstrate that our method achieves state-of-the-art performance with fewer parameters and FLOPs. Specifically, our YOLOv13-N improves mAP by 3.0\% over YOLO11-N and by 1.5\% over YOLOv12-N. The code and models of our YOLOv13 model are available at: https://github.com/iMoonLab/yolov13.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路路关注了科研通微信公众号
刚刚
松谦发布了新的文献求助50
1秒前
简单的paper完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
嘿嘿发布了新的文献求助10
1秒前
故酒应助xiaomi采纳,获得10
2秒前
万能图书馆应助阿宋采纳,获得10
3秒前
小啤酒瓶发布了新的文献求助10
3秒前
wtldkz完成签到,获得积分10
4秒前
圣泽同学完成签到,获得积分10
4秒前
刘亚玲完成签到 ,获得积分10
5秒前
00完成签到,获得积分10
5秒前
烟花应助司空天磊采纳,获得10
5秒前
激情的不弱完成签到,获得积分10
5秒前
5秒前
kkkkki完成签到,获得积分10
5秒前
6秒前
深情安青应助右右采纳,获得10
6秒前
深情安青应助Lu100采纳,获得10
6秒前
DiJia发布了新的文献求助10
7秒前
8秒前
9秒前
情怀应助卢夏锋采纳,获得10
9秒前
踏实威完成签到,获得积分10
10秒前
10秒前
10秒前
wjr完成签到,获得积分10
10秒前
Owen应助霸气的南晴采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
怕黑的芫荽完成签到,获得积分10
10秒前
大模型应助rrjl采纳,获得10
10秒前
zhonglv7应助鹿梦采纳,获得10
10秒前
朱晓宇完成签到,获得积分10
10秒前
tang发布了新的文献求助10
10秒前
11秒前
大方元风发布了新的文献求助10
11秒前
飞雪完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781