凝聚态物理
材料科学
电子结构
电子能带结构
超导电性
国家(计算机科学)
态密度
带隙
费米能级
作者
Lunan Huang,Timothy M. McCormick,Masayuki Ochi,Zhiying Zhao,Michi To Suzuki,Ryotaro Arita,Yun Wu,Daixiang Mou,Huibo Cao,Jiaqiang Yan,Nandini Trivedi,Adam Kaminski
出处
期刊:Nature Materials
[Springer Nature]
日期:2016-07-11
卷期号:15 (11): 1155-1160
被引量:444
摘要
In a type I Dirac or Weyl semimetal, the low energy states are squeezed to a single point in momentum space when the chemical potential Ef is tuned precisely to the Dirac/Weyl point. Recently, a type II Weyl semimetal was predicted to exist, where the Weyl states connect hole and electron bands, separated by an indirect gap. This leads to unusual energy states, where hole and electron pockets touch at the Weyl point. Here we present the discovery of a type II topological Weyl semimetal (TWS) state in pure MoTe2, where two sets of WPs (W2+-, W3+-) exist at the touching points of electron and hole pockets and are located at different binding energies above Ef. Using ARPES, modeling, DFT and calculations of Berry curvature, we identify the Weyl points and demonstrate that they are connected by different sets of Fermi arcs for each of the two surface terminations. We also find new surface "track states" that form closed loops and are unique to type II Weyl semimetals. This material provides an exciting, new platform to study the properties of Weyl fermions.
科研通智能强力驱动
Strongly Powered by AbleSci AI