冰毒-
甲基苯丙胺
神经肽Y受体
受体
氧化应激
内皮干细胞
药理学
血脑屏障
生物
化学
神经肽
医学
内科学
神经科学
中枢神经系统
生物化学
体外
有机化学
聚合物
单体
丙烯酸酯
作者
Fabiana Ventura,Mariana Muga,Vanessa Coelho‐Santos,Carlos Ribeiro,Ricardo A. Leitão,Ana Paula Silva
标识
DOI:10.1016/j.toxlet.2020.09.013
摘要
Methamphetamine (METH) consumption is a health problem that leads to neurological and psychiatric disturbances. The cellular alterations behind these conditions have been extensively investigated and it is now well-established that METH causes cerebrovascular alterations being a key feature in drug-induced neuropathology. Although promising advances in understanding the blood-brain barrier (BBB) alterations induced by METH, there is still no available approach to counteract or diminish such effects. Interestingly, several studies show that neuropeptide Y (NPY) has an important protective role against METH-induced neuronal and glial toxicity, as well as behavioral deficits. Despite these beneficial effects of the NPY system, nothing is known about its role in brain endothelial cells under conditions of METH exposure. Thus, our aim was to unravel the effect of NPY and its receptors against METH-induced endothelial cell dysfunction. For that, we used a human brain microvascular endothelial cell line (hCMEC/D3) and our results demonstrate that endothelial cells express both NPY Y1 (Y1R) and Y2 (Y2R) receptors, but only Y2R is upregulated after METH exposure. Moreover, this drug of abuse induced endothelial cell death and elicited the production of reactive oxygen species (ROS) by these cells, which were prevented by the activation of Y2R. Additional, cell death and oxidative stress triggered by METH were dependent on the concentration of the drug. In sum, with the present study we identified for the first time the NPY system, and particularly the Y2R subtype, as a promising target to protect against METH-induced neurovascular dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI