Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?

医学 肝细胞癌 神经组阅片室 放射科 无线电技术 组织病理学 介入放射学 磁共振成像 内科学 病理 神经学 精神科
作者
Xiaoyang Liu,Farzad Khalvati,Khashayar Namdar,Sandra E. Fischer,Sara Lewis,Bachir Taouli,Masoom A. Haider,Kartik Jhaveri
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (1): 244-255 被引量:80
标识
DOI:10.1007/s00330-020-07119-7
摘要

To differentiate combined hepatocellular cholangiocarcinoma (cHCC-CC) from cholangiocarcinoma (CC) and hepatocellular carcinoma (HCC) using machine learning on MRI and CT radiomics features. This retrospective study included 85 patients aged 32 to 86 years with 86 histopathology-proven liver cancers: 24 cHCC-CC, 24 CC, and 38 HCC who had MRI and CT between 2004 and 2018. Initial CT reports and morphological evaluation of MRI features were used to assess the performance of radiologists read. Following tumor segmentation, 1419 radiomics features were extracted using PyRadiomics library and reduced to 20 principle components by principal component analysis. Support vector machine classifier was utilized to evaluate MRI and CT radiomics features for the prediction of cHCC-CC vs. non-cHCC-CC and HCC vs. non-HCC. Histopathology was the reference standard for all tumors. Radiomics MRI features demonstrated the best performance for differentiation of cHCC-CC from non-cHCC-CC with the highest AUC of 0.77 (SD 0.19) while CT was of limited value. Contrast-enhanced MRI phases and pre-contrast and portal-phase CT showed excellent performance for the differentiation of HCC from non-HCC (AUC of 0.79 (SD 0.07) to 0.81 (SD 0.13) for MRI and AUC of 0.81 (SD 0.06) and 0.71 (SD 0.15) for CT phases, respectively). The misdiagnosis of cHCC-CC as HCC or CC using radiologists read was 69% for CT and 58% for MRI. Our results demonstrate promising predictive performance of MRI and CT radiomics features using machine learning analysis for differentiation of cHCC-CC from HCC and CC with potential implications for treatment decisions. • Retrospective study demonstrated promising predictive performance of MRI radiomics features in the differentiation of cHCC-CC from HCC and CC and of CT radiomics features in the differentiation of HCC from cHCC-CC and CC. • With future validation, radiomics analysis has the potential to inform current clinical practice for the pre-operative diagnosis of cHCC-CC and to enable optimal treatment decisions regards liver resection and transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jack完成签到,获得积分10
1秒前
科研通AI5应助qqqqwf采纳,获得10
1秒前
天天快乐应助不知道采纳,获得10
1秒前
1秒前
是八八不是八完成签到,获得积分10
2秒前
shunee发布了新的文献求助10
2秒前
WLL应助苏梨子采纳,获得20
3秒前
3秒前
zhb发布了新的文献求助10
3秒前
ty7889完成签到,获得积分10
4秒前
yatou327完成签到,获得积分10
7秒前
9秒前
搜集达人应助aniu采纳,获得10
10秒前
火星上的问儿完成签到,获得积分10
10秒前
10秒前
FashionBoy应助欧杰采纳,获得10
10秒前
阿巴阿巴发布了新的文献求助10
12秒前
槑槑完成签到,获得积分10
13秒前
翟易蓉完成签到,获得积分10
14秒前
英俊的路完成签到,获得积分20
15秒前
15秒前
yinrongbin发布了新的文献求助10
15秒前
FashionBoy应助ddz采纳,获得10
16秒前
17秒前
荔枝完成签到,获得积分10
19秒前
Ratel完成签到,获得积分10
20秒前
沉醉完成签到 ,获得积分10
21秒前
纯金金发布了新的文献求助20
22秒前
22秒前
hwx应助cy采纳,获得20
23秒前
小周完成签到 ,获得积分10
24秒前
Xenia完成签到,获得积分10
25秒前
ws556完成签到,获得积分10
26秒前
dudu不吃榴莲完成签到,获得积分10
27秒前
Percy完成签到 ,获得积分10
28秒前
aniu发布了新的文献求助10
28秒前
薄荷蓝完成签到,获得积分10
29秒前
小蘑菇应助格子采纳,获得10
30秒前
石中酒完成签到 ,获得积分10
32秒前
无花果应助那片叶子采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960