Synthesis of diagnostic quality cancer pathology images by generative adversarial networks

人工智能 对抗制 生成语法 计算机科学 质量(理念) 癌症 医学 病理 内科学 认识论 哲学
作者
Adrian Levine,Jason Peng,David Farnell,Mitchell Nursey,Yiping Wang,Julia Naso,Hezhen Ren,Hossein Farahani,Colin Chen,Derek S. Chiu,Aline Talhouk,Brandon S. Sheffield,Maziar Riazy,Philip P.C. Ip,Carlos Parra‐Herran,Anne M. Mills,Naveena Singh,Basile Tessier‐Cloutier,Taylor Salisbury,Jonathan Lee,Tim Salcudean,Steven J.M. Jones,David G. Huntsman,C. Blake Gilks,Stephen Yip,Ali Bashashati
标识
DOI:10.1002/path.5509
摘要

Deep learning-based computer vision methods have recently made remarkable breakthroughs in the analysis and classification of cancer pathology images. However, there has been relatively little investigation of the utility of deep neural networks to synthesize medical images. In this study, we evaluated the efficacy of generative adversarial networks to synthesize high-resolution pathology images of 10 histological types of cancer, including five cancer types from The Cancer Genome Atlas and the five major histological subtypes of ovarian carcinoma. The quality of these images was assessed using a comprehensive survey of board-certified pathologists (n = 9) and pathology trainees (n = 6). Our results show that the real and synthetic images are classified by histotype with comparable accuracies and the synthetic images are visually indistinguishable from real images. Furthermore, we trained deep convolutional neural networks to diagnose the different cancer types and determined that the synthetic images perform as well as additional real images when used to supplement a small training set. These findings have important applications in proficiency testing of medical practitioners and quality assurance in clinical laboratories. Furthermore, training of computer-aided diagnostic systems can benefit from synthetic images where labeled datasets are limited (e.g. rare cancers). We have created a publicly available website where clinicians and researchers can attempt questions from the image survey (http://gan.aimlab.ca/). © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助贪玩飞机采纳,获得10
1秒前
领导范儿应助狗东西采纳,获得10
2秒前
King16发布了新的文献求助10
2秒前
明理采珊完成签到,获得积分10
3秒前
INBI完成签到 ,获得积分20
3秒前
皮皮虾完成签到 ,获得积分10
3秒前
桃桃发布了新的文献求助10
4秒前
gogogogoossip完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
星辰完成签到,获得积分10
5秒前
5秒前
粗心的邴发布了新的文献求助10
5秒前
orixero应助222采纳,获得10
5秒前
5秒前
英姑应助凡夕木叶采纳,获得10
5秒前
5秒前
wangnn发布了新的文献求助10
5秒前
老王爱学习完成签到,获得积分10
6秒前
yulia完成签到 ,获得积分10
6秒前
JACK完成签到,获得积分10
6秒前
cuihao完成签到,获得积分10
6秒前
开心就吃猕猴桃完成签到,获得积分10
7秒前
holic完成签到,获得积分10
7秒前
管国晶完成签到,获得积分10
7秒前
科研通AI6应助yuyu877采纳,获得10
8秒前
可耐的无剑完成签到 ,获得积分10
8秒前
寒冷半雪完成签到,获得积分10
8秒前
虚幻蹇发布了新的文献求助10
9秒前
爆杀小白鼠完成签到,获得积分10
9秒前
10秒前
10秒前
dsfsd完成签到,获得积分10
10秒前
11秒前
kiki完成签到,获得积分10
11秒前
11秒前
哈哈哈完成签到,获得积分10
12秒前
Yanis完成签到,获得积分10
13秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4230500
求助须知:如何正确求助?哪些是违规求助? 3763784
关于积分的说明 11826057
捐赠科研通 3423158
什么是DOI,文献DOI怎么找? 1878466
邀请新用户注册赠送积分活动 931495
科研通“疑难数据库(出版商)”最低求助积分说明 839244