Synthesis of diagnostic quality cancer pathology images by generative adversarial networks

人工智能 对抗制 生成语法 计算机科学 质量(理念) 癌症 医学 病理 内科学 认识论 哲学
作者
Adrian Levine,Jason Peng,David Farnell,Mitchell Nursey,Yiping Wang,Julia Naso,Hezhen Ren,Hossein Farahani,Colin Chen,Derek S. Chiu,Aline Talhouk,Brandon S. Sheffield,Maziar Riazy,Philip P.C. Ip,Carlos Parra‐Herran,Anne M. Mills,Naveena Singh,Basile Tessier‐Cloutier,Taylor Salisbury,Jonathan Lee,Tim Salcudean,Steven J.M. Jones,David G. Huntsman,C. Blake Gilks,Stephen Yip,Ali Bashashati
标识
DOI:10.1002/path.5509
摘要

Deep learning-based computer vision methods have recently made remarkable breakthroughs in the analysis and classification of cancer pathology images. However, there has been relatively little investigation of the utility of deep neural networks to synthesize medical images. In this study, we evaluated the efficacy of generative adversarial networks to synthesize high-resolution pathology images of 10 histological types of cancer, including five cancer types from The Cancer Genome Atlas and the five major histological subtypes of ovarian carcinoma. The quality of these images was assessed using a comprehensive survey of board-certified pathologists (n = 9) and pathology trainees (n = 6). Our results show that the real and synthetic images are classified by histotype with comparable accuracies and the synthetic images are visually indistinguishable from real images. Furthermore, we trained deep convolutional neural networks to diagnose the different cancer types and determined that the synthetic images perform as well as additional real images when used to supplement a small training set. These findings have important applications in proficiency testing of medical practitioners and quality assurance in clinical laboratories. Furthermore, training of computer-aided diagnostic systems can benefit from synthetic images where labeled datasets are limited (e.g. rare cancers). We have created a publicly available website where clinicians and researchers can attempt questions from the image survey (http://gan.aimlab.ca/). © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王了了完成签到 ,获得积分10
1秒前
NexusExplorer应助XiuruLi采纳,获得10
2秒前
科研通AI6应助xxwz采纳,获得10
3秒前
4秒前
留胡子的半仙完成签到,获得积分10
6秒前
6秒前
kk131完成签到,获得积分10
6秒前
充电宝应助orange采纳,获得10
6秒前
科研顺利1完成签到,获得积分20
7秒前
weijun发布了新的文献求助10
10秒前
10秒前
秋凛发布了新的文献求助10
10秒前
在水一方应助yoo71采纳,获得10
12秒前
13秒前
俏皮芷蕊发布了新的文献求助30
13秒前
Stella应助坦率耳机采纳,获得200
17秒前
17秒前
啊喔完成签到,获得积分10
18秒前
Orange应助wr0112采纳,获得80
18秒前
18秒前
Janson发布了新的文献求助10
19秒前
啊是是是完成签到,获得积分10
19秒前
mly完成签到 ,获得积分10
20秒前
傅家庆发布了新的文献求助200
20秒前
大模型应助是小孙呀采纳,获得10
20秒前
Jeanie完成签到,获得积分10
20秒前
20秒前
大聪明应助huiii采纳,获得10
21秒前
Olivia雪雪完成签到 ,获得积分10
21秒前
22秒前
华风完成签到,获得积分10
22秒前
共享精神应助郭郭郭郭采纳,获得20
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
李健的小迷弟应助冯同学采纳,获得80
24秒前
小豹子发布了新的文献求助10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338701
求助须知:如何正确求助?哪些是违规求助? 4475775
关于积分的说明 13929452
捐赠科研通 4371050
什么是DOI,文献DOI怎么找? 2401660
邀请新用户注册赠送积分活动 1394683
关于科研通互助平台的介绍 1366468