钙钛矿(结构)
钝化
材料科学
带隙
量子效率
载流子寿命
量子产额
发光
产量(工程)
相(物质)
能量转换效率
光电子学
光致发光
光学
硅
纳米技术
化学
图层(电子)
结晶学
复合材料
荧光
有机化学
物理
作者
Emilio Gutierrez‐Partida,Hannes Hempel,Sebastián Caicedo‐Dávila,Meysam Raoufi,Francisco Peña‐Camargo,Max Grischek,René Gunder,Jonas Diekmann,Pietro Caprioglio,Kai Oliver Brinkmann,Hans Köbler,Steve Albrecht,Thomas Riedl,Antonio Abate,Daniel Abou‐Ras,Thomas Unold,Dieter Neher,Martin Stolterfoht
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-02-17
卷期号:6 (3): 1045-1054
被引量:66
标识
DOI:10.1021/acsenergylett.0c02642
摘要
Recent advancements in perovskite solar cell performance were achieved by stabilizing the α-phase of FAPbI3 in nip-type architectures. However, these advancements could not be directly translated to pin-type devices. Here, we fabricated a high-quality double cation perovskite (MA0.07FA0.93PbI3) with low bandgap energy (1.54 eV) using a two-step approach on a standard polymer (PTAA). The perovskite films exhibit large grains (∼1 μm), high external photoluminescence quantum yields of 20%, and outstanding Shockley–Read–Hall carrier lifetimes of 18.2 μs without further passivation. The exceptional optoelectronic quality of the neat material was translated into efficient pin-type cells (up to 22.5%) with improved stability under illumination. The low-gap cells stand out by their high fill factor (∼83%) due to reduced charge transport losses and short-circuit currents >24 mA cm–2. Using intensity-dependent quasi-Fermi level splitting measurements, we quantify an implied efficiency of 28.4% in the neat material, which can be realized by minimizing interfacial recombination and optical losses.
科研通智能强力驱动
Strongly Powered by AbleSci AI