Linear predictive coding distinguishes spectral EEG features of Parkinson's disease

脑电图 预测编码 帕金森病 模式识别(心理学) 计算机科学 人工智能 编码(社会科学) 语音识别 心理学 医学 神经科学 疾病 数学 统计 病理
作者
Md Fahim Anjum,Soura Dasgupta,Raghuraman Mudumbai,Arun Singh,James F. Cavanagh,Nandakumar S. Narayanan
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:79: 79-85 被引量:127
标识
DOI:10.1016/j.parkreldis.2020.08.001
摘要

We have developed and validated a novel EEG-based signal processing approach to distinguish PD and control patients: Linear-predictive-coding EEG Algorithm for PD (LEAPD). This method efficiently encodes EEG time series into features that can detect PD in a computationally fast manner amenable to real time applications.We included a total of 41 PD patients and 41 demographically-matched controls from New Mexico and Iowa. Data for all participants from New Mexico (27 PD patients and 27 controls) were used to evaluate in-sample LEAPD performance, with extensive cross-validation. Participants from Iowa (14 PD patients and 14 controls) were used for out-of-sample tests. Our method utilized data from six EEG leads which were as little as 2 min long.For the in-sample dataset, LEAPD differentiated PD patients from controls with 85.3 ± 0.1% diagnostic accuracy, 93.3 ± 0.5% area under the receiver operating characteristics curve (AUC), 87.9 ± 0.9% sensitivity, and 82.7 ± 1.1% specificity, with multiple cross-validations. After head-to-head comparison with state-of-the-art methods using our dataset, LEAPD showed a 13% increase in accuracy and a 15.5% increase in AUC. When the trained classifier was applied to a distinct out-of-sample dataset, LEAPD showed reliable performance with 85.7% diagnostic accuracy, 85.2% AUC, 85.7% sensitivity, and 85.7% specificity. No statistically significant effect of levodopa-ON and levodopa-OFF sessions were found.We describe LEAPD, an efficient algorithm that is suitable for real time application and captures spectral EEG features using few parameters and reliably differentiates PD patients from demographically-matched controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的手机完成签到,获得积分10
刚刚
longlulu发布了新的文献求助10
刚刚
天天快乐应助耍酷猎豹采纳,获得10
刚刚
pluto应助爱学习的栋采纳,获得10
刚刚
小陈呀完成签到 ,获得积分10
1秒前
1秒前
共享精神应助文龙采纳,获得10
1秒前
sMile发布了新的文献求助10
1秒前
1秒前
滴滴完成签到,获得积分10
1秒前
2秒前
2秒前
7777完成签到,获得积分10
2秒前
CipherSage应助冰琪采纳,获得10
3秒前
Dreamer完成签到,获得积分10
3秒前
GingerF应助乔乔采纳,获得50
4秒前
莫妮卡完成签到,获得积分10
4秒前
4秒前
4秒前
yym完成签到,获得积分20
4秒前
饱满一刀发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
HMO_eee完成签到,获得积分10
5秒前
6秒前
6秒前
白云苍狗应助yyy采纳,获得10
6秒前
6秒前
6秒前
善学以致用应助靖哥哥采纳,获得10
7秒前
莫妮卡发布了新的文献求助10
7秒前
7秒前
wer完成签到 ,获得积分10
7秒前
FashionBoy应助芋头酱采纳,获得10
7秒前
charles完成签到,获得积分10
7秒前
Owen应助cz采纳,获得10
8秒前
8秒前
8秒前
lemon发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5014497
求助须知:如何正确求助?哪些是违规求助? 4255286
关于积分的说明 13261267
捐赠科研通 4058730
什么是DOI,文献DOI怎么找? 2219926
邀请新用户注册赠送积分活动 1229361
关于科研通互助平台的介绍 1151782