An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring

基线(sea) 图表 体感诱发电位 计算机科学 人工智能 回归 医学 麻醉 统计 数学 地质学 海洋学
作者
Bi Fan,Han‐Xiong Li,Yong Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 300-307 被引量:18
标识
DOI:10.1109/tnsre.2015.2477557
摘要

Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助年度总结采纳,获得10
刚刚
夏微凉发布了新的文献求助10
刚刚
1秒前
slow完成签到,获得积分10
1秒前
包子凯越完成签到,获得积分10
1秒前
争气发布了新的文献求助10
3秒前
4秒前
fanfan完成签到,获得积分10
4秒前
Li发布了新的文献求助10
4秒前
可爱的函函应助RR采纳,获得10
4秒前
4秒前
5秒前
华仔应助哈哈哈采纳,获得10
6秒前
6秒前
6秒前
jijijibibibi完成签到,获得积分10
6秒前
科研通AI6.1应助DTkunkun采纳,获得30
7秒前
加油吧弟弟完成签到,获得积分10
8秒前
fanfan发布了新的文献求助10
8秒前
明亮白山完成签到 ,获得积分10
9秒前
9秒前
柯续缘完成签到,获得积分10
9秒前
FC完成签到,获得积分20
9秒前
Lucas应助23232采纳,获得30
10秒前
犹豫晓啸发布了新的文献求助10
10秒前
10秒前
lyh发布了新的文献求助10
11秒前
大模型应助wudi17采纳,获得10
11秒前
11秒前
cgshao发布了新的文献求助50
11秒前
贪玩星完成签到,获得积分10
11秒前
12秒前
小太阳发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
大个应助ym采纳,获得10
13秒前
苏小安发布了新的文献求助10
13秒前
PGao完成签到,获得积分10
14秒前
wml发布了新的文献求助10
14秒前
FlipFlops完成签到,获得积分10
14秒前
lyh完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002