Numerical Study on Elastic Parameter Identification of Large-Span Steel Truss Structures Based on Strain Test Data

桁架 结构工程 有限元法 弹性模量 试验数据 杨氏模量 跨度(工程) 应变计 工程类 材料科学 复合材料 软件工程
作者
Yuxin Zhang,Ao Zhou,Helong Xu,Hexin Zhang
出处
期刊:Buildings [MDPI AG]
卷期号:12 (11): 1861-1861 被引量:4
标识
DOI:10.3390/buildings12111861
摘要

Large-span steel trusses are widely used in public buildings such as large-span factory buildings, exhibition halls, gymnasiums, and bridges because of their fast construction speed and easy industrial manufacturing. Due to construction errors and environmental factors, the material properties may change during their service life, and it is an important prerequisite for the structural safety assessment to identify the true material parameters of the structure. Among the many parameters, the elastic modulus is one that has the greatest impact on the accuracy of structural safety analysis. In this paper, a mathematical analysis model of elastic modulus identification was constructed, based on the strain test data and the improved gradient regularization method. The relationship between the strain test data and elastic moduli was established. A common finite element program based on the method was developed to identify the elastic modulus. A series of numerical simulations was carried out on a 53-element steel truss model to study the availability and numerical stability of the method. The effects of different initial values, numbers of strain tests, and locations of the strain test as well as the number of unknown parameters on the identification results were studied. The results showed that the proposed method had very high accuracy and computational efficiency. For the case of 53 unknown parameters without considering the test error, the identification accuracy could reach a 1 × 10−10 order of magnitude after only several iterations. This paper provides an effective solution to obtain the actual values of the elastic modulus of steel truss structures in practical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
撒玉蓉完成签到,获得积分20
刚刚
lala39发布了新的文献求助10
刚刚
cyw发布了新的文献求助10
刚刚
刚刚
兔子完成签到,获得积分10
1秒前
1秒前
爆米花应助武雨寒采纳,获得10
2秒前
dingm2发布了新的文献求助10
3秒前
5秒前
5秒前
小鲁发布了新的文献求助10
5秒前
冷酷的文博完成签到,获得积分20
6秒前
李云穆发布了新的文献求助10
6秒前
6秒前
6秒前
陈冠羽发布了新的文献求助10
8秒前
仰望喀纳斯的星空完成签到,获得积分10
8秒前
小蘑菇应助路边采纳,获得10
8秒前
英吉利25发布了新的文献求助10
9秒前
10秒前
在水一方应助dingm2采纳,获得10
17秒前
栀子菜发布了新的文献求助10
18秒前
云歇雨住发布了新的文献求助10
18秒前
20秒前
21秒前
Moonpie应助小本采纳,获得10
22秒前
23秒前
lll完成签到,获得积分20
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
JamesPei应助舒心的冰烟采纳,获得10
26秒前
武雨寒发布了新的文献求助10
27秒前
熙熙发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
路边完成签到,获得积分10
29秒前
lala39完成签到,获得积分20
29秒前
31秒前
31秒前
lyx完成签到 ,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736544
求助须知:如何正确求助?哪些是违规求助? 5366624
关于积分的说明 15333378
捐赠科研通 4880340
什么是DOI,文献DOI怎么找? 2622818
邀请新用户注册赠送积分活动 1571719
关于科研通互助平台的介绍 1528544