亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wind turbine fault detection based on deep residual networks

SCADA系统 残余物 计算机科学 故障检测与隔离 Softmax函数 涡轮机 实时计算 恒虚警率 断层(地质) 模式识别(心理学) 深度学习 人工智能 数据挖掘 算法 执行机构 工程类 电气工程 地质学 机械工程 地震学
作者
Jiayang Liu,Xiaosun Wang,Shijing Wu,Lijuan Wan,Fuqi Xie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119102-119102 被引量:25
标识
DOI:10.1016/j.eswa.2022.119102
摘要

Condition monitoring and fault detection for wind turbines (WTs) can effectively lower the effect of failures. A large amount of data would be generated during the operation of WTs, and these data have the following characteristics: (1) The data volumes are too large, and it is difficult to extract fault features. (2) Signals are correlated, and a fault may lead to multiple sensors to alarm. (3) Dimension and orders of magnitude are different between parameters. (4) The supervisory control and data acquisition (SCADA) data are fluctuating, which can easily lead to false alarms and missed alarms with certain one-sidedness. (5) Fault alarms possess a lag. To solve the problems of inaccurate and untimely fault detection (FD) caused by these data characteristics, a new deep network called deep residual network (DRN) is proposed in this paper for WTs’ detection. In the proposed method, the raw data collected by SCADA system are directly applied as the inputs of the DRN. Then, a convolutional residual building block (CRBB) is established by using convolutional layers, squeeze and excitation units. Meanwhile, the improved meta-ACON (active or not) is introduced to replace of rectified linear unit (ReLU). The high-level features are extracted from the raw data by stacking multiple CRBBs. Finally, the FD results are obtained by feeding the extracted features to the softmax classifier. The proposed DRN is validated by using the data from the SCADA system. The results indicate that the proposed DRN achieves better performance, and outperforms some published fault detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
P_Chem完成签到,获得积分10
29秒前
shen完成签到,获得积分10
36秒前
43秒前
所所应助袁青寒采纳,获得10
43秒前
深情安青应助袁青寒采纳,获得10
43秒前
科研通AI5应助袁青寒采纳,获得10
43秒前
wanci应助袁青寒采纳,获得10
43秒前
慕青应助袁青寒采纳,获得10
43秒前
英俊的铭应助袁青寒采纳,获得10
44秒前
索谓完成签到 ,获得积分10
44秒前
47秒前
asdf发布了新的文献求助10
49秒前
1分钟前
marco完成签到,获得积分20
1分钟前
marco发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
欣欣发布了新的文献求助10
1分钟前
1分钟前
袁青寒发布了新的文献求助10
1分钟前
2分钟前
rerorero18发布了新的文献求助10
2分钟前
rerorero18完成签到,获得积分10
2分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
2分钟前
李志全完成签到 ,获得积分10
2分钟前
子凡完成签到 ,获得积分10
2分钟前
小蘑菇应助斯文墨镜采纳,获得10
2分钟前
冷静机器猫完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
斯文墨镜发布了新的文献求助10
3分钟前
追寻青柏发布了新的文献求助10
3分钟前
斯文墨镜完成签到,获得积分10
3分钟前
昭早早关注了科研通微信公众号
3分钟前
3分钟前
CC发布了新的文献求助10
4分钟前
天天快乐应助Mr兔仙森采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333687
关于积分的说明 10262991
捐赠科研通 3049534
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511