亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progressive Perception Learning for Main Coronary Segmentation in X-Ray Angiography

分割 背景(考古学) 计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 感知 图像分割 模式识别(心理学) 心理学 语言学 生物 哲学 古生物学 神经科学
作者
Hong-Wei Zhang,Zhifan Gao,Dong Zhang,William Kongto Hau,Heye Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 864-879 被引量:48
标识
DOI:10.1109/tmi.2022.3219126
摘要

Main coronary segmentation from the X-ray angiography images is important for the computer-aided diagnosis and treatment of coronary disease. However, it confronts the challenge at three different image granularities (the semantic, surrounding, and local levels). The challenge includes the semantic confusion between the main and collateral vessels, low contrast between the foreground vessel and background surroundings, and local ambiguity near the vessel boundaries. The traditional hand-crafted feature-based methods may be insufficient because they may lack the semantic relationship information and may not distinguish the main and collateral vessels. The existing deep learning-based methods seem to have issues due to the deficiency in the long-distance semantic relationship capture, the foreground and background interference adaptability, and the boundary detail information preservation. To solve the main coronary segmentation challenge, we propose the progressive perception learning (PPL) framework to inspect these three different image granularities. Specifically, the PPL contains the context, interference, and boundary perception modules. The context perception is designed to focus on the main coronary vessel based on the semantic dependence capture among different coronary segments. The interference perception is designed to purify the feature maps based on the foreground vessel enhancement and background artifact suppression. The boundary perception is designed to highlight the boundary details based on boundary feature extraction through the intersection between the foreground and background predictions. Extensive experiments on 1085 subjects show that the PPL is effective (e.g., the overall Dice is greater than 95%), and superior to thirteen state-of-the-art coronary segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助zhaoyg采纳,获得10
10秒前
沉静代芹发布了新的文献求助10
12秒前
24秒前
25秒前
29秒前
29秒前
zhaoyg发布了新的文献求助10
29秒前
ceeray23应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
Jasper应助科研通管家采纳,获得10
33秒前
ceeray23应助科研通管家采纳,获得10
33秒前
ceeray23应助科研通管家采纳,获得10
33秒前
34秒前
40秒前
科研通AI6应助温婉的凝雁采纳,获得10
46秒前
无与伦比完成签到 ,获得积分10
1分钟前
dfb发布了新的文献求助10
1分钟前
1分钟前
liangco关注了科研通微信公众号
1分钟前
mm完成签到 ,获得积分10
1分钟前
欣喜的香菱完成签到 ,获得积分10
1分钟前
充电宝应助dfb采纳,获得10
1分钟前
qin完成签到,获得积分10
1分钟前
1分钟前
liangco发布了新的文献求助30
1分钟前
liangco完成签到,获得积分10
1分钟前
Cherry完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
liubai发布了新的文献求助10
2分钟前
dfb发布了新的文献求助10
2分钟前
踏实善若完成签到,获得积分10
2分钟前
踏实善若发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749550
什么是DOI,文献DOI怎么找? 2549289
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091