Understanding Interfacial Chemistry Interactions in Energy-Dense Lithium-Ion Electrodes

纳米技术 电极 材料科学 阳极 储能 复合数 数码产品 工艺工程 计算机科学 复合材料 电气工程 工程类 化学 功率(物理) 物理化学 物理 量子力学
作者
Donghee Gueon,Miguel A. González,Kenneth J. Takeuchi,Esther S. Takeuchi,Amy C. Marschilok,Elsa Reichmanis
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (2): 156-167 被引量:11
标识
DOI:10.1021/accountsmr.2c00198
摘要

ConspectusFor the past two decades, conversion and alloying-type materials have been heralded as the natural heir to commercially available graphite anodes due to their ability to deliver high gravimetric/volumetric power. Commercialization of batteries with these high-energy-density active materials could impact a variety of sectors including electric vehicles, grid storage, and consumer electronics and contribute toward an ever-increasing electrified world. However, the various failure mechanisms from inherent interfacial chemical instabilities associated with these materials make them unable to be merely substituted into currently available electrode fabrication and formulation processing techniques. As a result, realizing the high theoretical capacity and achieving commercial viability of these materials will rely on the careful manipulation of interfacial chemical interactions that dictate and control various kinetic and transport processes across multiple scales of the composite electrode. This has led to a plethora of research that has focused on systematically understanding properties of the different electrode components and designing carefully constructed electrode formulations to achieve composite electrodes with increased chemical stability, enhanced local mixed conductivities, or improved mechanical resilience.This Account relates recent progress in the understanding of synergetic opportunities for energy-dense, resilient composite anodes. By understanding the interplay between components of the composite electrode, we can construct enhanced well-integrated electrodes with performance metrics that surpass empirically derived architectures. Due to the increased complexity of high-volume-expanding electrodes, performance is more than the cumulative contributions of the individual components, and therefore energy and compatibility matching are important for robust electrochemical performance across cycling, rate capability, facile lithium-ion transport, and stability. In this Account, synergistic opportunities are framed from a chemistry perspective as we focus on examining interfacial interactions that span all electrode components: the active material surface, conductive agent linkage, and polymeric binder mesoscale. Control of key interfacial chemistry can be achieved through chemical functionalization, physical interactions, and other types of linkages and thereby lead to utilization of high-energy-density active materials in robust composite electrodes. Leveraging several techniques such as the Hanson solubility parameter (HSP) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy among others can be important in gaining mechanistic insights for key kinetic and transport phenomena that occur across multiple interface length scales. Importantly, understanding the underlying effect of interfacial manipulation on the mechanisms of transport and kinetic processes leads to the development of experimental toolsets and design frameworks applicable to not just current material classes but to forward-looking chemistries that can be applied to next-generation battery materials. Herein, we discuss interfacial control of the composite electrodes via chemical modification techniques toward the creation of reliable, long-lasting, energy-dense lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王凡完成签到 ,获得积分10
刚刚
辛勤者完成签到,获得积分10
1秒前
子若系雨完成签到,获得积分10
2秒前
Kidmuse完成签到,获得积分10
6秒前
开心惜梦完成签到,获得积分10
8秒前
大模型应助美丽心情采纳,获得10
10秒前
YHBBZ完成签到 ,获得积分10
11秒前
WYK完成签到 ,获得积分10
12秒前
15秒前
skj你考六级完成签到,获得积分10
16秒前
Hiram完成签到,获得积分10
17秒前
6666应助king采纳,获得20
18秒前
刘柳完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
孤独的问柳完成签到,获得积分10
24秒前
呆橘完成签到 ,获得积分10
24秒前
24秒前
25秒前
Star完成签到 ,获得积分10
25秒前
luobote完成签到 ,获得积分10
25秒前
一粟的粉r完成签到 ,获得积分10
26秒前
美丽心情发布了新的文献求助10
28秒前
wangeil007完成签到,获得积分10
31秒前
仙女完成签到 ,获得积分10
35秒前
Augreen完成签到,获得积分10
39秒前
40秒前
一米阳光完成签到 ,获得积分10
41秒前
少说谎了好吗关注了科研通微信公众号
47秒前
乐观的星月完成签到 ,获得积分10
48秒前
小阳肖恩完成签到 ,获得积分10
49秒前
yy完成签到 ,获得积分10
49秒前
研友_Z1eDgZ完成签到,获得积分10
49秒前
liandli123完成签到 ,获得积分10
50秒前
50秒前
沐杨完成签到,获得积分10
51秒前
小新新完成签到 ,获得积分10
53秒前
谨慎鸽子完成签到 ,获得积分10
53秒前
jianghs发布了新的文献求助10
54秒前
54秒前
勤劳语山完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067