Review of graph construction and graph learning in stock price prediction

计算机科学 库存(枪支) 实施 图形 股票市场 金融市场 机器学习 人工智能 理论计算机科学 财务 经济 机械工程 古生物学 工程类 生物 程序设计语言
作者
Yunong Wang,Yi Qu,Zhensong Chen
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:214: 771-778 被引量:9
标识
DOI:10.1016/j.procs.2022.11.240
摘要

Precise prediction of stock prices leads to more profits and more effective risk prevention, which is of great significance to both investors and regulators. Recent years, various kinds of information not directly-relevant with stock prices have received more attention, such as texts, images or connections. These external information has the potential of reflecting or influencing fluctuations, and thus, given the utilization of advanced analyzing techniques, the forecasting performance of stock prices could be promoted substantially. For instance, graph neural network models have expanded into many other disciplines including stock price prediction, and exhibited impressive representation learning ability. However, in stock markets, well-defined graphs are rarely seen and how to formulate the graph structures needed remains a challenging problem. Towards this end, this article presents a comprehensive overview of graph construction and graph learning in stock price prediction, by reviewing the existing studies, summarizing its general paradigm, special cases and proposing possible prospects. Our research not only systematically reveals the feasible ways of constructing graphs in financial markets, but also provides insights for further implementations of graph learning models into stock prediction tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
科研通AI5应助调皮雨灵采纳,获得30
7秒前
无辜的夜绿完成签到,获得积分20
9秒前
书生也是小郎中完成签到 ,获得积分10
11秒前
11秒前
源泉0825完成签到 ,获得积分10
13秒前
CipherSage应助学术渣渣采纳,获得10
14秒前
Grace完成签到,获得积分20
14秒前
14秒前
ytli完成签到 ,获得积分10
14秒前
鱿小鱼完成签到,获得积分20
14秒前
shi123发布了新的文献求助10
14秒前
18秒前
皮皮球发布了新的文献求助10
18秒前
Sylvia完成签到,获得积分10
18秒前
调皮雨灵完成签到,获得积分10
19秒前
lvlei发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
shi123完成签到,获得积分20
22秒前
22秒前
22秒前
22秒前
最佳发布了新的文献求助10
23秒前
英姑应助有梦想的咸鱼采纳,获得10
23秒前
24秒前
cdercder发布了新的文献求助10
25秒前
夏夏发布了新的文献求助10
26秒前
26秒前
LI完成签到 ,获得积分10
26秒前
yyy完成签到,获得积分10
26秒前
ding应助shi123采纳,获得10
26秒前
学术渣渣发布了新的文献求助10
27秒前
27秒前
有魅力的大船完成签到,获得积分10
28秒前
华仔应助影子采纳,获得10
28秒前
基因金给柔弱的书文的求助进行了留言
29秒前
30秒前
共享精神应助mao采纳,获得10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845801
求助须知:如何正确求助?哪些是违规求助? 3388159
关于积分的说明 10551960
捐赠科研通 3108790
什么是DOI,文献DOI怎么找? 1713127
邀请新用户注册赠送积分活动 824592
科研通“疑难数据库(出版商)”最低求助积分说明 774908