Deformable Convolution-Enhanced Hierarchical Transformer with Spectral-Spatial Cluster Attention for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 模式识别(心理学) 像素 计算机视觉
作者
Yu Ming Victor Fang,Le Sun,Yuhui Zheng,Zebin Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 701-716 被引量:5
标识
DOI:10.1109/tip.2024.3522809
摘要

Vision Transformer (ViT), known for capturing non-local features, is an effective tool for hyperspectral image classification (HSIC). However, ViT's multi-head self-attention (MHSA) mechanism often struggles to balance local details and long-range relationships for complex high-dimensional data, leading to a loss in spectral-spatial information representation. To address this issue, we propose a deformable convolution-enhanced hierarchical Transformer with spectral-spatial cluster attention (SClusterFormer) for HSIC. The model incorporates a unique cluster attention mechanism that utilizes spectral angle similarity and Euclidean distance metrics to enhance the representation of fine-grained homogenous local details and improve discrimination of non-local structures in 3-D HSI and 2-D morphological data, respectively. Additionally, a dual-branch multiscale deformable convolution framework augmented with frequency-based spectral attention is designed to capture both the discrepancy patterns in high-frequency and overall trend of the spectral profile in low-frequency. Finally, we utilize a cross-feature pixel-level fusion module for collaborative cross-learning and fusion of the results from the dual-branch framework. Comprehensive experiments conducted on multiple HSIC datasets validate the superiority of our proposed SClusterFormer model, which outperforms existing methods. The source code of SClusterFormer is available at https://github.com/Fang666666/HSIC SClusterFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
JinwenShi完成签到,获得积分10
2秒前
希寒关注了科研通微信公众号
2秒前
4秒前
4秒前
5秒前
5秒前
传奇3应助啦啦啦采纳,获得10
5秒前
可爱的函函应助啦啦啦采纳,获得10
5秒前
小蘑菇应助啦啦啦采纳,获得10
5秒前
李健的小迷弟应助啦啦啦采纳,获得10
5秒前
思源应助why采纳,获得10
6秒前
6秒前
6秒前
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
hh发布了新的文献求助10
10秒前
10秒前
JxJ完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
认真的艳发布了新的文献求助10
10秒前
qsxy发布了新的文献求助10
11秒前
11秒前
zzz发布了新的文献求助10
11秒前
11秒前
ding应助schweineheil小屁孩采纳,获得10
11秒前
pu完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4662993
求助须知:如何正确求助?哪些是违规求助? 4045092
关于积分的说明 12512062
捐赠科研通 3737432
什么是DOI,文献DOI怎么找? 2063908
邀请新用户注册赠送积分活动 1093436
科研通“疑难数据库(出版商)”最低求助积分说明 974203