Machine learning–enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations

虚拟筛选 对接(动物) 分子动力学 计算机科学 计算生物学 人工智能 化学 生物 计算化学 医学 护理部
作者
Si Zheng,Yaowen Gu,Yuzhen Gu,Yelin Zhao,Liang Li,Min Wang,Rui Jiang,Xia Yu,Ting Chen,Jiao Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1) 被引量:1
标识
DOI:10.1093/bib/bbae696
摘要

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb. Our screening method produced satisfactory predictions on three data-splitting settings, with the top predicted bioactive compounds all known antibacterial or anti-TB drugs. To further identify and evaluate drugs with repurposing potential in TB therapy, 15 screened potential compounds were selected for subsequent computational and experimental evaluations, out of which aldoxorubicin and quarfloxin showed potent inhibition of Mtb strain H37Rv, with minimal inhibitory concentrations of 4.16 and 20.67 μM/mL, respectively. More inspiringly, these two compounds also showed antibacterial activity against multidrug-resistant TB isolates and exhibited strong antimicrobial activity against Mtb. Furthermore, molecular docking, molecular dynamics simulation, and the surface plasmon resonance experiments validated the direct binding of the two compounds to Mtb DNA gyrase. In summary, our effective comprehensive virtual screening workflow successfully repurposed two novel drugs (aldoxorubicin and quarfloxin) as promising anti-Mtb candidates. The verification results provide useful information for the further development and clinical verification of anti-TB drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Jeff采纳,获得20
1秒前
落月铭发布了新的文献求助10
2秒前
3秒前
莫茹完成签到 ,获得积分10
4秒前
goldNAN发布了新的文献求助10
5秒前
7秒前
标致靖仇发布了新的文献求助10
8秒前
kexuedagz完成签到,获得积分10
9秒前
bkagyin应助书中月采纳,获得30
10秒前
wangrblzu应助书中月采纳,获得10
10秒前
shanage应助书中月采纳,获得10
10秒前
Orange应助书中月采纳,获得30
10秒前
dfsf发布了新的文献求助10
12秒前
12秒前
华仔应助迷路路人采纳,获得10
13秒前
顾矜应助杨桃采纳,获得10
13秒前
李健应助轻语采纳,获得10
13秒前
16秒前
Ghiocel完成签到,获得积分10
16秒前
pi完成签到 ,获得积分10
17秒前
李昶完成签到 ,获得积分10
19秒前
雪球完成签到,获得积分10
19秒前
Lucas应助任无施采纳,获得10
21秒前
SYLH应助王羊补牢采纳,获得10
21秒前
21秒前
隐形曼青应助尊敬海豚momo采纳,获得10
21秒前
22秒前
qin完成签到,获得积分10
22秒前
23秒前
搞怪的怀蕊完成签到,获得积分10
23秒前
XIAOLI应助健忘的板凳采纳,获得10
25秒前
25秒前
26秒前
CaliU完成签到,获得积分10
27秒前
27秒前
创不可贴发布了新的文献求助10
28秒前
28秒前
坦呐发布了新的文献求助10
28秒前
29秒前
迷路路人发布了新的文献求助10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149