Usefulness of Automatic Speech Recognition Assessment of Children With Speech Sound Disorders: Validation Study

预印本 语音识别 语音 计算机科学 声音(地理) 听力学 心理学 医学 万维网 声学 物理
作者
Do Hyung Kim,Joo Won Jeong,Dayoung Kang,Taekyung Ahn,Yeonjung Hong,Younggon Im,Jae-Won Kim,Min Jung Kim,Dae‐Hyun Jang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e60520-e60520 被引量:3
标识
DOI:10.2196/60520
摘要

Background Speech sound disorders (SSDs) are common communication challenges in children, typically assessed by speech-language pathologists (SLPs) using standardized tools. However, traditional evaluation methods are time-intensive and prone to variability, raising concerns about reliability. Objective This study aimed to compare the evaluation outcomes of SLPs and an automatic speech recognition (ASR) model using two standardized SSD assessments in South Korea, evaluating the ASR model’s performance. Methods A fine-tuned wav2vec 2.0 XLS-R model, pretrained on 436,000 hours of adult voice data spanning 128 languages, was used. The model was further trained on 93.6 minutes of children’s voices with articulation errors to improve error detection. Participants included children referred to the Department of Rehabilitation Medicine at a general hospital in Incheon, South Korea, from August 19, 2022, to June 14, 2023. Two standardized assessments—the Assessment of Phonology and Articulation for Children (APAC) and the Urimal Test of Articulation and Phonology (U-TAP)—were used, with ASR transcriptions compared to SLP transcriptions. Results This study included 30 children aged 3-7 years who were suspected of having SSDs. The phoneme error rates for the APAC and U-TAP were 8.42% (457/5430) and 8.91% (402/4514), respectively, indicating discrepancies between the ASR model and SLP transcriptions across all phonemes. Consonant error rates were 10.58% (327/3090) and 11.86% (331/2790) for the APAC and U-TAP, respectively. On average, there were 2.60 (SD 1.54) and 3.07 (SD 1.39) discrepancies per child for correctly produced phonemes, and 7.87 (SD 3.66) and 7.57 (SD 4.85) discrepancies per child for incorrectly produced phonemes, based on the APAC and U-TAP, respectively. The correlation between SLPs and the ASR model in terms of the percentage of consonants correct was excellent, with an intraclass correlation coefficient of 0.984 (95% CI 0.953-0.994) and 0.978 (95% CI 0.941-0.990) for the APAC and UTAP, respectively. The z scores between SLPs and ASR showed more pronounced differences with the APAC than the U-TAP, with 8 individuals showing discrepancies in the APAC compared to 2 in the U-TAP. Conclusions The results demonstrate the potential of the ASR model in assessing children with SSDs. However, its performance varied based on phoneme or word characteristics, highlighting areas for refinement. Future research should include more diverse speech samples, clinical settings, and speech data to strengthen the model’s refinement and ensure broader clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
李周发布了新的文献求助10
1秒前
1秒前
FashionBoy应助baisefengche采纳,获得10
1秒前
1秒前
2秒前
bkagyin应助111采纳,获得10
3秒前
Re发布了新的文献求助30
3秒前
852应助ttsong2采纳,获得10
4秒前
6666应助Boren采纳,获得10
4秒前
4秒前
5秒前
彩泥完成签到 ,获得积分10
5秒前
6秒前
7秒前
Lchemistry完成签到,获得积分10
7秒前
7秒前
游子轩完成签到,获得积分10
7秒前
8秒前
8秒前
晴天漫漫完成签到 ,获得积分10
9秒前
Windycityguy发布了新的文献求助10
9秒前
梧州雨发布了新的文献求助10
10秒前
橘生淮南完成签到,获得积分10
10秒前
深情安青应助275891672采纳,获得10
12秒前
Boren发布了新的文献求助10
12秒前
12秒前
秋心发布了新的文献求助10
14秒前
无为发布了新的文献求助10
14秒前
hh发布了新的文献求助10
16秒前
Windycityguy完成签到,获得积分10
16秒前
17秒前
17秒前
sciscisci完成签到,获得积分10
17秒前
19秒前
只只完成签到,获得积分10
21秒前
21秒前
独特草莓发布了新的文献求助10
21秒前
hhhhhh发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848