Multi-Energy Coupling Load Forecasting in Integrated Energy System with Improved Variational Mode Decomposition-Temporal Convolutional Network-Bidirectional Long Short-Term Memory Model

联轴节(管道) 模式(计算机接口) 期限(时间) 能量(信号处理) 分解 短时记忆 计算机科学 算法 物理 人工智能 循环神经网络 人工神经网络 工程类 量子力学 机械工程 生态学 生物 操作系统
作者
Xinfu Liu,Lei Zhu,Wei Zhou,Yanfeng Cao,Wang Meng-xiao,Wenhao Hu,Chunhua Liu,Peng Liu,Guoliang Liu
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (22): 10082-10082
标识
DOI:10.3390/su162210082
摘要

Accurate load forecasting is crucial to the stable operation of integrated energy systems (IES), which plays a significant role in advancing sustainable development. Addressing the challenge of insufficient prediction accuracy caused by the inherent uncertainty and volatility of load data, this study proposes a multi-energy load forecasting method for IES using an improved VMD-TCN-BiLSTM model. The proposed model consists of optimizing the Variational Mode Decomposition (VMD) parameters through a mathematical model based on minimizing the average permutation entropy (PE). Moreover, load sequences are decomposed into different Intrinsic Mode Functions (IMFs) using VMD, with the optimal number of models determined by the average PE to reduce the non-stationarity of the original sequences. Considering the coupling relationship among electrical, thermal, and cooling loads, the input features of the forecasting model are constructed by combining the IMF set of multi-energy loads with meteorological data and related load information. As a result, a hybrid neural network structure, integrating a Temporal Convolutional Network (TCN) with a Bidirectional Long Short-Term Memory (BiLSTM) network for load prediction is developed. The Sand Cat Swarm Optimization (SCSO) algorithm is employed to obtain the optimal hyper-parameters of the TCN-BiLSTM model. A case analysis is performed using the Arizona State University Tempe campus dataset. The findings demonstrate that the proposed method can outperform six other existing models in terms of Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2), verifying its effectiveness and superiority in load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LOVEMEVOL完成签到,获得积分10
1秒前
CodeCraft应助多肉丸子采纳,获得10
2秒前
3秒前
立夏完成签到,获得积分10
3秒前
5秒前
小二郎应助whisper采纳,获得10
5秒前
第一步完成签到 ,获得积分10
5秒前
1234发布了新的文献求助10
6秒前
zx完成签到,获得积分10
8秒前
8秒前
daliu完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
虬咖琵完成签到,获得积分10
9秒前
愉悦完成签到,获得积分10
10秒前
1234完成签到,获得积分10
13秒前
14秒前
15秒前
赘婿应助必行采纳,获得10
16秒前
hui发布了新的文献求助10
16秒前
YW发布了新的文献求助10
16秒前
清脆代桃完成签到 ,获得积分10
17秒前
hzs完成签到,获得积分10
18秒前
18秒前
19秒前
搜集达人应助innocence采纳,获得50
20秒前
海王星发布了新的文献求助10
20秒前
林悦涵完成签到,获得积分10
20秒前
21秒前
秤子发布了新的文献求助10
21秒前
阿蒙完成签到,获得积分10
22秒前
舒服的友安完成签到,获得积分10
22秒前
YW完成签到,获得积分10
23秒前
瞿寒发布了新的文献求助10
24秒前
林生完成签到 ,获得积分10
24秒前
卡卡西应助非主流的毛线采纳,获得30
25秒前
zq完成签到,获得积分10
26秒前
博qb完成签到,获得积分10
26秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243