PKM2 controls cochlear development through lactate-dependent transcriptional regulation

巴基斯坦卢比 细胞生物学 糖酵解 生物 组蛋白H3 耳蜗 重编程 毛细胞 内耳 厌氧糖酵解 丙酮酸激酶 条件基因敲除 组蛋白 生物化学 新陈代谢 细胞 神经科学 基因 表型
作者
Mingxuan Wu,Gaogan Jia,Yaoqian Liu,Yiyun Lou,Yunjie Li,Mingyu Xia,Huawei Li,Wenyan Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (2): e2410829122-e2410829122 被引量:11
标识
DOI:10.1073/pnas.2410829122
摘要

Understanding the role of metabolic processes during inner ear development is essential for identifying targets for hair cell (HC) regeneration, as metabolic choices play a crucial role in cell proliferation and differentiation. Among the metabolic processes, growing evidence shows that glucose metabolism is closely related to organ development. However, the role of glucose metabolism in mammalian inner ear development and HC regeneration remains unclear. In this study, we found that glycolytic metabolism is highly active during mouse and human cochlear prosensory epithelium expansion. Using mouse cochlear organoids, we revealed that glycolytic activity in cochlear nonsensory epithelial cells was predominantly dominated by pyruvate kinase M2 (PKM2). Deletion of PKM2 induced a metabolic switch from glycolysis to oxidative phosphorylation, impairing cochlear organoid formation. Furthermore, conditional loss of PKM2 in cochlear progenitors hindered sensory epithelium morphogenesis, as demonstrated in PKM2 knockout mice. Mechanistically, pyruvate is generated by PKM2 catalysis and then converted into lactate, which then lactylates histone H3, regulating the transcription of key genes for cochlear development. Specifically, accumulated lactate causes histone H3 lactylation at lysine 9 (H3K9la), upregulating the expression of Sox family transcription factors through epigenetic modification. Moreover, overexpression of PKM2 in supporting cells (SCs) triggered metabolism reprogramming and enhanced HC generation in cultured mouse and human cochlear explants. Our findings uncover a molecular mechanism of sensory epithelium formation driven by glycolysis-lactate flow and suggest unique approaches for mammalian HC regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凶狠的冬易完成签到 ,获得积分10
1秒前
粗心的羽毛完成签到,获得积分10
1秒前
所所应助好久不见采纳,获得10
2秒前
llllllll完成签到,获得积分10
2秒前
2秒前
2秒前
沛公帐下左将军樊哙完成签到,获得积分10
2秒前
2秒前
小走发布了新的文献求助10
3秒前
3秒前
可爱的怀绿完成签到,获得积分20
3秒前
3秒前
4秒前
刘天宇完成签到,获得积分10
4秒前
深情安青应助zxh采纳,获得10
4秒前
欢呼的皮皮虾完成签到,获得积分10
4秒前
随遇而安发布了新的文献求助10
4秒前
guang_sl发布了新的文献求助10
5秒前
5秒前
5秒前
田様应助rooner采纳,获得10
6秒前
CodeCraft应助旭东静静采纳,获得10
6秒前
6秒前
zyp发布了新的文献求助10
7秒前
embrace发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
派大星完成签到,获得积分10
7秒前
7秒前
完美世界应助隋阳采纳,获得10
7秒前
8秒前
yu发布了新的文献求助30
8秒前
团子完成签到,获得积分10
8秒前
8秒前
刘天宇发布了新的文献求助10
8秒前
小叶子发布了新的文献求助10
8秒前
shirely发布了新的文献求助10
8秒前
9秒前
xiaoxin发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506326
求助须知:如何正确求助?哪些是违规求助? 4601891
关于积分的说明 14478915
捐赠科研通 4535908
什么是DOI,文献DOI怎么找? 2485682
邀请新用户注册赠送积分活动 1468480
关于科研通互助平台的介绍 1441014