已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MIVNDN: Ultra-Short-Term Wind Power Prediction Method with MSDBO-ICEEMDAN-VMD-Nons-DCTransformer Net

风力发电 控制理论(社会学) 计算机科学 算法 数学 工程类 电气工程 控制(管理) 人工智能
作者
Q. Zhuang,Lu Gao,Fei Zhang,Xiaoying Ren,Ling Qin,Yongping Wang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (23): 4829-4829 被引量:1
标识
DOI:10.3390/electronics13234829
摘要

Wind speed, wind direction, humidity, temperature, altitude, and other factors affect wind power generation, and the uncertainty and instability of the above factors bring challenges to the regulation and control of wind power generation, which requires flexible management and scheduling strategies. Therefore, it is crucial to improve the accuracy of ultra-short-term wind power prediction. To solve this problem, this paper proposes an ultra-short-term wind power prediction method with MIVNDN. Firstly, the Spearman’s and Kendall’s correlation coefficients are integrated to select the appropriate features. Secondly, the multi-strategy dung beetle optimization algorithm (MSDBO) is used to optimize the parameter combinations in the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) method, and the optimized decomposition method is used to decompose the historical wind power sequence to obtain a series of intrinsic modal function (IMF) components with different frequency ranges. Then, the high-frequency band IMF components and low-frequency band IMF components are reconstructed using the t-mean test and sample entropy, and the reconstructed high-frequency IMF component is decomposed quadratically using the variational modal decomposition (VMD) to obtain a new set of IMF components. Finally, the Nons-Transformer model is improved by adding dilated causal convolution to its encoder, and the new set of IMF components, as well as the unreconstructed mid-frequency band IMF components and the reconstructed low-frequency IMF, component are used as inputs to the model to obtain the prediction results and perform error analysis. The experimental results show that our proposed model outperforms other single and combined models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何三岁发布了新的文献求助10
1秒前
CEJ完成签到,获得积分10
1秒前
1秒前
HOXXXiii完成签到,获得积分10
1秒前
2秒前
2秒前
恋阙谙发布了新的文献求助10
4秒前
七分甜发布了新的文献求助10
7秒前
DD完成签到,获得积分10
7秒前
7秒前
端庄闭月完成签到,获得积分20
7秒前
醉熏的荣轩完成签到 ,获得积分10
8秒前
葛成民发布了新的文献求助30
8秒前
12应助666采纳,获得10
9秒前
何三岁完成签到,获得积分10
9秒前
松子儿hhh完成签到,获得积分10
11秒前
DD发布了新的文献求助10
11秒前
情怀应助zsz采纳,获得10
12秒前
16秒前
17秒前
调皮代亦发布了新的文献求助20
20秒前
七分甜完成签到,获得积分10
20秒前
舒心海蓝完成签到,获得积分20
20秒前
21秒前
奋斗叫兽完成签到 ,获得积分10
22秒前
23秒前
23秒前
Owen应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
23秒前
李健应助科研通管家采纳,获得10
23秒前
zlx完成签到,获得积分10
23秒前
单纯的小土豆完成签到,获得积分10
24秒前
林狗发布了新的文献求助10
24秒前
英俊的铭应助北海西贝采纳,获得10
24秒前
26秒前
小文殊发布了新的文献求助10
28秒前
勇哥发布了新的文献求助10
28秒前
NexusExplorer应助活泼的飞扬采纳,获得10
28秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Wh-exclamatives, Imperatives and Wh-questions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827058
求助须知:如何正确求助?哪些是违规求助? 3369299
关于积分的说明 10455578
捐赠科研通 3088953
什么是DOI,文献DOI怎么找? 1699543
邀请新用户注册赠送积分活动 817382
科研通“疑难数据库(出版商)”最低求助积分说明 770208