A novel multi-user collaborative cognitive radio spectrum sensing model: Based on a CNN-LSTM model

认知无线电 光谱(功能分析) 计算机科学 认知障碍 认知 人工智能 语音识别 神经科学 电信 生物 物理 无线 量子力学
作者
K. Wang,Yangyang Chen,Dan Bo,S. Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (1): e0316291-e0316291
标识
DOI:10.1371/journal.pone.0316291
摘要

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN’s local feature extraction capability and LSTM’s advantage in handling sequential data to optimize sensing accuracy and efficiency. Furthermore, a multi-head self-attention mechanism is incorporated to improve information flow, enhancing the model’s adaptability and robustness in dynamic and complex environments. Simulation experiments were conducted to quantitatively evaluate the performance of the proposed model. The results demonstrate that the CNN-LSTM model achieves low sensing error rates across various numbers of secondary users (16, 24, 32, 40, 48), with a particularly low sensing error of 9.9658% under the 32-user configuration. Additionally, when comparing the sensing errors of different deep learning models, the proposed model consistently outperformed others, showing a 12% lower sensing error under low-power conditions (100 mW). This study successfully develops a CNN-LSTM-based cooperative spectrum sensing model for multi-user cognitive radio systems, significantly improving sensing accuracy and efficiency. By integrating CNN and LSTM technologies, the model not only enhances sensing performance but also improves the handling of long-term dependencies in time-series data, offering a novel technical approach and theoretical support for cognitive radio research. Moreover, the introduction of the multi-head self-attention mechanism further optimizes the model’s adaptability to complex environments, demonstrating significant potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
怪物吐泡泡完成签到,获得积分10
4秒前
么么哒荼蘼酱完成签到,获得积分10
4秒前
wang发布了新的文献求助10
6秒前
充电宝应助青栀采纳,获得10
6秒前
汉堡包应助苏步清采纳,获得10
7秒前
jianjiao发布了新的文献求助10
7秒前
9秒前
9秒前
郑森友应助琳琅采纳,获得10
9秒前
冷风吹6666完成签到,获得积分10
10秒前
桐桐应助wang采纳,获得10
11秒前
NexusExplorer应助yxy采纳,获得10
12秒前
小宋发布了新的文献求助30
14秒前
在水一方应助CJ采纳,获得10
19秒前
大力盼秋完成签到,获得积分10
20秒前
共享精神应助科研通管家采纳,获得30
22秒前
CodeCraft应助mayounaizi14采纳,获得10
23秒前
科研助手6应助科研通管家采纳,获得10
23秒前
科研助手6应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
24秒前
24秒前
25秒前
25秒前
26秒前
思源应助su采纳,获得10
27秒前
30秒前
30秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896977
求助须知:如何正确求助?哪些是违规求助? 3440810
关于积分的说明 10818835
捐赠科研通 3165748
什么是DOI,文献DOI怎么找? 1748945
邀请新用户注册赠送积分活动 845077
科研通“疑难数据库(出版商)”最低求助积分说明 788423