已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence Application in Diagnosing, Classifying, Localizing, Detecting and Estimation the Severity of Skin Condition in Aesthetic Medicine: A Review

人工智能 估计 计算机科学 模式识别(心理学) 医学 工程类 系统工程
作者
Kar Wai Alvin Lee,Lisa Kwin Wah Chan,Cheuk Hung Lee,Jorge Bohórquez,Diala Haykal,Jovian Wan,Kyu‐Ho Yi
出处
期刊:Dermatological reviews [Wiley]
卷期号:6 (1) 被引量:1
标识
DOI:10.1002/der2.70015
摘要

ABSTRACT Background The integration of artificial intelligence (AI) and machine learning (ML) has revolutionized aesthetic medicine, enhancing the diagnosis, classification, and treatment of skin conditions. These technologies offer high precision, personalized care, and the potential to reduce human error. This review aimed to evaluate the current applications of AI and ML in aesthetic medicine, focusing on studies graded as Level I or II evidence by the Oxford Centre for Evidence‐Based Medicine (CEBM). Methods A comprehensive search of MEDLINE, PubMed, and Ovid databases identified studies employing AI and ML for diagnosing and managing skin conditions. Studies were included if they demonstrated high diagnostic accuracy, improved treatment personalization, or other measurable clinical outcomes. Results AI and ML systems showed high accuracy in detecting and diagnosing conditions such as skin cancer, acne, psoriasis, and seborrheic dermatitis. AI‐based platforms facilitated personalized treatment plans, enhancing therapeutic outcomes while minimizing errors. The integration of AI reduced diagnostic time and lowered healthcare costs, demonstrating significant potential for improving patient care. However, challenges such as algorithmic bias, data privacy concerns, and the need for high‐quality training datasets were highlighted. Conclusion AI and ML have transformative potential in aesthetic medicine, offering improved diagnostic precision, enhanced patient outcomes, and cost reductions. Addressing limitations related to algorithm bias, regulatory oversight, and data quality is essential to fully realize the benefits of AI in clinical practice. Future research should focus on developing robust, ethical, and regulatory‐compliant AI solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助XP采纳,获得10
刚刚
6秒前
如约而至完成签到 ,获得积分10
6秒前
8秒前
13秒前
朴素金毛完成签到 ,获得积分10
13秒前
14秒前
隐形曼青应助nickel采纳,获得10
14秒前
XP发布了新的文献求助10
16秒前
20秒前
20秒前
21秒前
22秒前
23秒前
24秒前
Stefani发布了新的文献求助10
25秒前
punch完成签到 ,获得积分10
26秒前
nickel发布了新的文献求助10
27秒前
silence发布了新的文献求助10
28秒前
贾舒涵发布了新的文献求助30
28秒前
科研通AI5应助lgbabe采纳,获得10
29秒前
慕青应助yy0322采纳,获得10
30秒前
聪慧冰兰发布了新的文献求助10
30秒前
摸鱼咯完成签到 ,获得积分10
31秒前
xu发布了新的文献求助10
34秒前
洁净亦巧完成签到,获得积分10
35秒前
36秒前
充电宝应助yyymmma采纳,获得10
37秒前
ding发布了新的文献求助50
37秒前
38秒前
刺猬快快跑完成签到,获得积分10
39秒前
Ava应助jj采纳,获得10
40秒前
Samming完成签到 ,获得积分10
41秒前
Zyysby发布了新的文献求助30
41秒前
dxszing完成签到,获得积分10
42秒前
44秒前
kmmu0611完成签到 ,获得积分10
45秒前
科研通AI5应助瓦斯采纳,获得30
47秒前
一只羊完成签到 ,获得积分10
48秒前
慕青应助科研通管家采纳,获得10
53秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788045
求助须知:如何正确求助?哪些是违规求助? 3333573
关于积分的说明 10262471
捐赠科研通 3049374
什么是DOI,文献DOI怎么找? 1673536
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477