T1‐contrast enhanced MRI generation from multi‐parametric MRI for glioma patients with latent tumor conditioning

流体衰减反转恢复 磁共振成像 分割 胶质瘤 核医学 计算机科学 医学 人工智能 参数统计 模式识别(心理学) 放射科 数学 材料科学 统计 冶金 癌症研究
作者
Zach Eidex,Mojtaba Safari,Richard L. J. Qiu,David S. Yu,Hui‐Kuo G. Shu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17600
摘要

Abstract Background Gadolinium‐based contrast agents (GBCAs) are commonly used in MRI scans of patients with gliomas to enhance brain tumor characterization using T1‐weighted (T1W) MRI. However, there is growing concern about GBCA toxicity. This study develops a deep‐learning framework to generate T1‐postcontrast (T1C) from pre‐contrast multiparametric MRI. Purpose We propose the tumor‐aware vision transformer (TA‐ViT) model that predicts high‐quality T1C images. The predicted tumor region is significantly improved ( p < 0.001) by conditioning the transformer layers from predicted segmentation maps through the adaptive layer norm zero mechanism. The predicted segmentation maps were generated with the multi‐parametric residual (MPR) ViT model and transformed into a latent space to produce compressed, feature‐rich representations. The TA‐ViT model was applied to T1w and T2‐FLAIR to predict T1C MRI images of 501 glioma cases from an open‐source dataset. Selected patients were split into training ( N = 400), validation ( N = 50), and test ( N = 51) sets. Model performance was evaluated with the peak‐signal‐to‐noise ratio (PSNR), normalized cross‐correlation (NCC), and normalized mean squared error (NMSE). Results Both qualitative and quantitative results demonstrate that the TA‐ViT model performs superior against the benchmark MPR‐ViT model. Our method produces synthetic T1C MRI with high soft tissue contrast and more accurately synthesizes both the tumor and whole brain volumes. The synthesized T1C images achieved remarkable improvements in both tumor and healthy tissue regions compared to the MPR‐ViT model. For healthy tissue and tumor regions, the results were as follows: NMSE: 8.53 ± 4.61E‐4; PSNR: 31.2 ± 2.2; NCC: 0.908 ± 0.041 and NMSE: 1.22 ± 1.27E‐4, PSNR: 41.3 ± 4.7, and NCC: 0.879 ± 0.042, respectively. Conclusion The proposed method generates synthetic T1C images that closely resemble real T1C images. Future development and application of this approach may enable contrast‐agent‐free MRI for brain tumor patients, eliminating the risk of GBCA toxicity and simplifying the MRI scan protocol.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcdamoy完成签到,获得积分10
1秒前
bkppforever发布了新的文献求助10
1秒前
1秒前
2秒前
成就茗发布了新的文献求助10
2秒前
搜集达人应助辛勤的刚采纳,获得10
3秒前
继续加油吧应助Maxw采纳,获得10
5秒前
5秒前
5秒前
余峥瑶完成签到 ,获得积分10
5秒前
zhh发布了新的文献求助10
5秒前
飲啖茶食個包给Yanwenjun的求助进行了留言
6秒前
烟花应助本末倒纸采纳,获得30
6秒前
顾一刀发布了新的文献求助10
6秒前
李健应助若尘采纳,获得10
7秒前
Shrimp完成签到 ,获得积分10
8秒前
曾经青亦完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
bkppforever完成签到,获得积分10
10秒前
yuji4268发布了新的文献求助10
10秒前
Ann发布了新的文献求助10
11秒前
爆米花应助司马逍遥采纳,获得10
12秒前
orixero应助zhh采纳,获得10
12秒前
帅气豌豆完成签到 ,获得积分10
14秒前
14秒前
钙钛矿科研狗完成签到,获得积分10
15秒前
15秒前
pgg发布了新的文献求助10
15秒前
15秒前
Ava应助耍酷问兰采纳,获得10
16秒前
继续加油吧应助旷野采纳,获得10
17秒前
17秒前
李健应助舒远采纳,获得20
17秒前
17秒前
AA完成签到,获得积分10
18秒前
19秒前
桐桐应助李泽彦采纳,获得50
19秒前
Lucille发布了新的文献求助10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 600
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182803
求助须知:如何正确求助?哪些是违规求助? 3718755
关于积分的说明 11721707
捐赠科研通 3398266
什么是DOI,文献DOI怎么找? 1864547
邀请新用户注册赠送积分活动 922288
科研通“疑难数据库(出版商)”最低求助积分说明 833967