Hierarchical structure formation by crystal growth-front instabilities during ice templating

前线(军事) 材料科学 化学物理 冰晶 冰的形成 晶体生长 结晶学 地质学 纳米技术 化学 光学 物理 海洋学 大气科学
作者
Kaiyang Yin,Kaihua Ji,Louise Strutzenberg Littles,Rohit Trivedi,Alain Karma,Ulrike G. K. Wegst
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (23) 被引量:15
标识
DOI:10.1073/pnas.2210242120
摘要

Directional solidification of aqueous solutions and slurries in a temperature gradient is widely used to produce cellular materials through a phase separation of solutes or suspended particles between growing ice lamellae. While this process has analogies to the directional solidification of metallurgical alloys, it forms very different hierarchical structures. The resulting honeycomb-like porosity of freeze-cast materials consists of regularly spaced, lamellar cell walls which frequently exhibit unilateral surface features of morphological complexity reminiscent of living forms, all of which are unknown in metallurgical structures. While the strong anisotropy of ice-crystal growth has been hypothesized to play a role in shaping those structures, the mechanism by which they form has remained elusive. By directionally freezing binary water mixtures containing small solutes obeying Fickian diffusion, and phase-field modeling of those experiments, we reveal how those structures form. We show that the flat side of lamellae forms because of slow faceted ice-crystal growth along the c-axis, while weakly anisotropic fast growth in other directions, including the basal plane, is responsible for the unilateral features. Diffusion-controlled morphological primary instabilities on the solid-liquid interface form a cellular structure on the atomically rough side of the lamellae, which template regularly spaced “ridges” while secondary instabilities of this structure are responsible for the more complex features. Collating the results, we obtain a scaling law for the lamellar spacing, λ(VG)-1/2 , where V and G are the local growth rate and temperature gradient, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShengjuChen完成签到 ,获得积分10
2秒前
xueshudog完成签到,获得积分10
2秒前
灵梦柠檬酸完成签到,获得积分10
2秒前
迷路的游侠完成签到,获得积分10
3秒前
jodie0105完成签到,获得积分10
3秒前
qiang发布了新的文献求助10
4秒前
元谷雪发布了新的文献求助30
5秒前
kxyraw完成签到,获得积分20
5秒前
科研通AI5应助123采纳,获得10
5秒前
语霖仙完成签到,获得积分10
6秒前
Nakjeong完成签到 ,获得积分10
7秒前
Jess给昵称的求助进行了留言
7秒前
littleyi完成签到,获得积分10
8秒前
生椰拿铁不加生椰完成签到 ,获得积分10
8秒前
白踏歌发布了新的文献求助10
9秒前
t3t3t3t3完成签到,获得积分10
9秒前
9秒前
mrz完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
可可完成签到,获得积分10
11秒前
健忘的醉易完成签到,获得积分10
11秒前
科目三应助龙哥采纳,获得10
12秒前
分子遗传小菜鸟完成签到,获得积分10
13秒前
充电宝应助轩辕代珊采纳,获得10
13秒前
JankinWen发布了新的文献求助10
14秒前
15秒前
15秒前
XiaoM发布了新的文献求助10
17秒前
费城青年完成签到,获得积分10
17秒前
钮卿完成签到,获得积分10
18秒前
haochi发布了新的文献求助10
18秒前
爱科研的缓冲液完成签到,获得积分20
19秒前
19秒前
萤火虫发布了新的文献求助200
19秒前
科研助手6应助单纯半双采纳,获得10
20秒前
20秒前
20秒前
kk完成签到,获得积分10
22秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Handbook of Material Weathering 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831477
求助须知:如何正确求助?哪些是违规求助? 3373663
关于积分的说明 10480971
捐赠科研通 3093648
什么是DOI,文献DOI怎么找? 1702873
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771284