亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Distributed Learning-Based Load-Aware Heterogeneous Vehicular Edge Computing

计算机科学 边缘计算 GSM演进的增强数据速率 分布式计算 计算机网络 人工智能
作者
Lei Zhu,Zhizhong Zhang,Lilan Liu,Linlin Feng,Peng Lin,Yu Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (15): 17350-17365 被引量:3
标识
DOI:10.1109/jsen.2023.3283413
摘要

Vehicular edge computing (VEC) is an emerging enabler in strengthening driving efficiency and traffic safety. However, both performance bottlenecks and low-resource efficiency of heterogeneous edge servers arise concurrently because of the inhomogeneous load distribution among the servers. Further, the unsaturated infrastructure coverage situation can deteriorate the concurrent issues. Although transmitting raw task data with large sizes among heterogeneous edge servers can relieve the concurrent issues, it distinctly degrades the core network's efficiency, especially during rush hours. Meanwhile, it cannot settle the unsaturated coverage situation. To relieve the concurrent issues without degrading the core network's efficiency, we introduce an aerial relay station (ARS) that can flexibly relay vehicular tasks to nearby heterogeneous edge servers. The long-term task-scheduling problem without any prior environment knowledge for the considered vehicular edge system is crucial but still up in the air. We formulate the system latency minimization problem as a partially observable stochastic game (POSG). Then a model-free multiagent reinforcement learning algorithm is developed to search the real-time load-aware scheduling policy. Besides, we design a practical factor named offloading latency gain to assist the training process of the learning algorithm. Simulation experiments show that our proposed algorithm (PA) can better exploit idle computation resources of heterogeneous edge infrastructures and significantly reduce the average system latency up to 15%–20% over existing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjoy发布了新的文献求助10
3秒前
齐一诺完成签到 ,获得积分10
6秒前
本本完成签到 ,获得积分10
8秒前
HydraZ完成签到,获得积分10
13秒前
可久斯基完成签到 ,获得积分10
15秒前
王子安完成签到 ,获得积分10
16秒前
kingcoffee完成签到 ,获得积分10
19秒前
23秒前
25秒前
饮冰发布了新的文献求助30
27秒前
31秒前
34秒前
37秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
41秒前
张宇完成签到,获得积分10
41秒前
XH发布了新的文献求助10
42秒前
学术资源乞丐完成签到,获得积分10
43秒前
HHHC应助没烦恼采纳,获得10
48秒前
赘婿应助木子剑光军采纳,获得10
49秒前
51秒前
TEMPO完成签到,获得积分10
52秒前
柚哦完成签到,获得积分10
55秒前
1分钟前
1分钟前
小兑完成签到 ,获得积分10
1分钟前
1分钟前
大气的乌冬面完成签到,获得积分10
1分钟前
饮冰完成签到 ,获得积分10
1分钟前
张宇发布了新的文献求助10
1分钟前
大胆猎豹完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
青瓜大薯完成签到 ,获得积分10
1分钟前
2分钟前
啦啦啦给啦啦啦的求助进行了留言
2分钟前
小蘑菇应助woods采纳,获得10
2分钟前
2分钟前
研友_ng9E28完成签到,获得积分10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847627
求助须知:如何正确求助?哪些是违规求助? 3390308
关于积分的说明 10561356
捐赠科研通 3110626
什么是DOI,文献DOI怎么找? 1714425
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775390